background image

RESET 

(Active Low, 

TTL compatible

VDD

GND

LDC1

LDC1

LDC2

LDC2

PWR GND 

(for LD V

S

)

PWR GND 

(for LD V

S

)

V

SET

 

1

V

SET

 

2

(Impedance:

2kΩ per driver,

1kΩ when 

paralleled)

GND

 

(forV

SET

)

V

S

LD

VDD

SAFETY INFORMATION

SAFE OPERATING AREA — DO NOT EXCEED 
INTERNAL POWER DISSIPATION LIMITS

Before attempting to operate the FL500 driver, it is imperative 

that you first determine that the unit will operate within the 

Safe Operating Area 

(SOA). Operating outside of the SOA 

may damage the laser and the FL500. Operating outside of 

the SOA will void the warranty.

To  determine  if  the  FL500  driver  will  be  operating  in  the 

safe range in your application,  consult the instructions for 

calculating the Safe Operating Area online:

www.teamwavelength.com/support/design-tools/soa-ld-calculator/

SOA charts are included in this datasheet for quick reference 

(

page 11

),  but  we  recommend  you  use  the  online  tools 

instead.

T

o

 

ensure

 

safe

 

operaTion

 

of

 

The

 fL500 

Driver

iT

 

is

 

imperaTive

 

ThaT

 

you

 

DeTermine

 

if

 

The

 

uniT

 

is

 

going

 

To

 

be

 

operaTing

 

wiThin

 

The

 

inTernaL

 

heaT

 

DissipaTion

 

s

afe

 o

peraTing

 a

rea

 (soa).

If you have any questions about the Safe Operating Area 

calculator,  call  the  factory  for  free  and  prompt  technical 

assistance.

PREVENT DAMAGE FROM ELECTROSTATIC 
DISCHARGE

Before proceeding, it is critical that you take precautions to 

prevent electrostatic discharge (ESD) damage to the driver 

and  your  laser.  ESD  damage  can  result  from  improper 

handling of sensitive electronics, and is easily preventable 

with simple precautions.

For more information regarding ESD, see Application Note 

AN-LDTC06: Basics: Electrostatic Discharge (ESD).

We recommend that you always observe ESD precautions 

when handing the FL500 driver and your laser diode.

!

THEORY OF OPERATION

The FL500 driver is a controlled current source: it delivers 

the current commanded by the setpoint. The current source 

continually monitors the actual output current, compares it to 

the setpoint, and adjusts the current if there is a difference 

between the two signals.

It may be useful to remember that you do not directly set the 

driver current setpoint; instead, you adjust a voltage signal 

that represents the output current. The voltage and output 

current are related by a transfer function that varies by driver 

capacity. The setpoint voltage is adjusted with an external 

input.

As current is driven through the load, there is a voltage drop 

across the load because of the impedance. As the current 

increases, the voltage drop may increase to the point that it 

reaches the Compliance Voltage limit of the current source. 

Once  that  occurs,  the  current  source  is  no  longer  able  to 

increase the current driven to the load even if you increase 

the setpoint.

Figure 6

 shows the block diagram of the FL500.

The  FL500  driver  includes  features  that  help  protect  your 

laser and make the driver more versatile in a wide array of 

applications:  handheld  devices,  airborne  applications,  and 

spectroscopy systems.

Figure 6.  FL500 Block Diagram

© 2020

www.teamWavelength.com

7

FL500 LASER DIODE DRIVER

Summary of Contents for FL500

Page 1: ...patible Shutdown Pin Adjustable Current Limit on Evaluation Board Adjustable Current Range Output 500 kHz sinewave Constant Current Bandwidth 100 kHz square wave CONTENTS QUICK CONNECT GUIDE 2 PIN DES...

Page 2: ...A calculator https www teamwavelength com support design tools soa ld calculator Figure 1 FL500 Top View Pin Layout Figure 2 Dual 250 mA drivers configuration Figure 1 shows the top view Pin layout of...

Page 3: ...node Laser Diode Cathode Photodiode Anode Common Figure 4 Laser Type Diagrams LASER DRIVER TEST LOADS Figure 5 shows a recommended simulated laser load for Type A and Type B lasers in Constant Current...

Page 4: ...VSET1 VSET2 VSET2 6 Setpoint for LDC2 control 2 k input impedance 0 to 2 V range There is no internal clamping so higher voltage here will produce more current through the laser diode Not recommended...

Page 5: ...IOUT 500 mA 300 nsec Fall Time IOUT 500 mA 300 nsec Bandwidth Constant Current Sine Wave 500 kHz Bandwidth Constant Current Square Wave 100 kHz Delayed Start 100 msec Slow Start ramp rate 15 mA msec D...

Page 6: ...de Rejection Setpoint Full Temperature Range 16 64 dB Power Supply Rejection Full Temperature Range 60 dB THERMAL Heatspreader Temperature Rise TAMBIENT 25 C 43 C W Pin Solderability Solder temp 260 C...

Page 7: ...roper handling of sensitive electronics and is easily preventable with simple precautions For more information regarding ESD see Application Note AN LDTC06 Basics Electrostatic Discharge ESD We recomm...

Page 8: ...m VS is determined by the voltage drop across the laser diode and half the setpoint voltage VSMIN VLD VSET 2 25 mV across FET Ground this power supply at Pins 9 10 PGND Using Pin 2 could damage the FL...

Page 9: ...8 11 12 on each FL500 together and wire the test load to these pins and Pin 1 VDD Tie PGND Pins 9 10 together and use to ground VS Ground Pin 2 as well Tie each Pin 3 RESET together and ground to enab...

Page 10: ...driver use the same circuit to also connect to VSET2 CONSTANT POWER MODE To operate in Constant Power mode with photodiode feedback use the circuit below from the FL591 schematic PDA1 PDR1 R10 1 0K 1...

Page 11: ...the driver will be operating within the SOA Refer to the laser datasheet to find the maximum voltage VLOAD and current ILOAD specifications Calculate the voltage drop across the driver VDROP VS VLOAD...

Page 12: ...r driver is compliance limited Check the laser diode specifications to determine the forward voltage VF Make sure that the FL500 is not compliance limited Refer to the Electrical Specifications table...

Page 13: ...are 5 0 75 19 1 mm 0 047 1 19 mm 0 125 3 2 mm 0 45 11 4 mm 0 48 12 2 mm 0 040 1 02 mm 0 55 13 8 mm 0 26 6 5 mm 0 035 0 89 mm 0 45 11 4 mm 0 100 2 5 mm 0 085 2 2 mm 0 100 2 5 mm 0 018 0 46 mm 0 75 19...

Page 14: ...r incidental or consequential damages in connection with the furnishing performance or use of this material No part of this document may be translated to another language without the prior written con...

Reviews: