background image

8R

Battery Selection

540 watts ÷ 12V = 

45 DC Amps

270 Amp-Hours ÷ 55 Amps 

Inverter/Charger Rating = 

5 Hours Recharge

Select Auxiliary Battery Type 

(if any)

Select “Deep Cycle” batteries to receive optimum performance from your Inverter/Charger. Do not use ordinary car or starting batteries or batteries rated in
Cold Cranking Amps (CCA). If the batteries you connect to the Inverter/Charger are not true Deep Cycle batteries, their operational lifetimes may be significantly
shortened. If you are using the same battery bank to power the Inverter/Charger as well as DC loads, your battery bank will need to be appropriately
sized (larger loads will require a battery bank with a larger amp-hour capacity) or the operational lifetimes of the batteries may be significantly shortened.

Batteries of either Wet-Cell (vented) or Gel-Cell /Absorbed Glass Mat (sealed) construction are ideal. 6-volt “golf cart”, Marine Deep-Cycle or
8D Deep-Cycle batteries are also acceptable. You must set the Inverter/Charger’s Battery Type DIP Switch (see Configuration section for more
information) to match the type of batteries you connect or your batteries may be degraded or damaged over an extended period of time. In
many cases, the vehicle battery may be the only one installed. Auxiliary batteries must be identical to the vehicle batteries if they are
connected to each other.

Match Battery Amp-Hour Capacity to Your Application

Select a battery or system of batteries that will provide your Inverter/Charger with proper DC voltage and an adequate amp-hour capacity
to power your application. Even though Tripp Lite Inverter/Chargers are highly-efficient at DC-to-AC inversion, their rated output capacities
are limited by the total amp-hour capacity of connected batteries and the support of your vehicle’s alternator if the engine is kept running.

• STEP 1: Determine Total Wattage Required

Add the wattage ratings of all equipment you will connect to your Inverter/Charger.
Wattage ratings are usually listed in equipment manuals or on nameplates. If your
equipment is rated in amps, multiply that number times AC utility voltage to determine
watts. (Example: a ¼ in. drill requires 2½ amps. 2½ amps × 120 volts = 300 watts .)

Note: Your Inverter/Charger will operate at higher efficiencies at about 75% - 80% of nameplate rating.

• STEP 2: Determine DC Battery Amps Required

Divide the total wattage required (from step 1, above) by the battery voltage (12)
to determine the DC amps required.

• STEP 3: Estimate Battery Amp-Hours Required 

(for operation unsupported

by the alternator)
Multiply the DC amps required (from step 2, above) by the number of hours you
estimate you will operate your equipment exclusively from battery power
before you have to recharge your batteries with utility- or generator-supplied
AC power. Compensate for inefficiency by multiplying this number by 1.2.
This will give you a rough estimate of how many amp-hours of battery power
(from one or several batteries) you should connect to your Inverter/Charger.

NOTE! Battery amp-hour ratings are usually given for a 20-hour discharge rate. Actual amp-hour capacities are less
when batteries are discharged at faster rates. For example, batteries discharged in 55 minutes provide only 50% of
their listed amp-hour ratings, while batteries discharged in 9 minutes provide as little as 30% of their amp-hour ratings.

• STEP 4: Estimate Battery Recharge Required, Given Your Application

You must allow your batteries to recharge long enough to replace the charge
lost during inverter operation or else you will eventually run down your batteries.
To estimate the minimum amount of time you need to recharge your batteries
given your application, divide your required battery amp-hours (from step 3,
above) by your Inverter/Charger’s rated charging amps (see  separate Specifications
Sheet).

NOTE! For Tripp Lite Inverter/Chargers providing 1000 watts or less of continuous AC power, a full-size battery
will normally allow sufficient power for many applications before recharging is necessary. For mobile applications,
if a single battery is continuously fed by an alternator at high idle or faster, then recharging from utility or generator
power may not be necessary. For Tripp Lite Inverter/Chargers over 1000 watts used in mobile applications, Tripp Lite
recommends you use at least two batteries, if possible fed by a heavy-duty alternator anytime the vehicle is running.
Tripp Lite Inverter/Chargers will provide adequate power for ordinary usage within limited times without the
assistance of utility or generator power. However, when operating extremely heavy electrical loads at their peak
in the absence of utility power, you may wish to “assist your batteries” by running an auxiliary generator or vehicle
engine, and doing so at faster than normal idling.

Example

Tools

300W +  220W +  20W  = 

540W

¼" Drill

Orbital Sander

Cordless Tool Charger

Appliances

300W +  140W +  100W = 

540W

Blender

Color TV

Laptop Computer

45 DC Amps × 5 Hrs. Runtime

× 1.2 Inefficiency Rating = 

270 Amp-Hours

Summary of Contents for PowerVerter 93-2642

Page 1: ...lt In ISOBAR Surge Protection Automatic Overload Protection Ideal Output for All Loads Frequency Controlled Output Automatic Load Switching Balanced Load Sharing Better for Your Batteries Faster Batte...

Page 2: ...e hydrogen gas can accumulate near batteries if they are not kept well ventilated your batteries should not be installed whether for a mobile or stationary application in a dead air compartment Ideall...

Page 3: ...e Circuit Breaker protect your Inverter Charger against damage due to charger failure See Operation section for resetting instructions Remote Control Module Connector allows remote monitoring and cont...

Page 4: ...details LINE Green LED If the operating mode switch is set to AUTO REMOTE this light will ILLUMINATE CONTINUOUSLY when your connected equipment is receiving continuous AC power supplied from a utility...

Page 5: ...d of the unit Wait one minute then switch operating mode switch back to either AUTO REMOTE or CHARGE ONLY Select Low AC Input Voltage Point for Switching to Battery OPTIONAL Switch Voltage Position 10...

Page 6: ...it The figures show how to set your DIP Switches for charger limiting B1 B2 Set Battery Charging Amps OPTIONAL Check specifications for your unit s high and low charging amp options By setting on high...

Page 7: ...module Connect Battery Temperature Sensing Cable OPTIONAL The battery temperature sensing function prolongs battery life by adjusting the charge float voltage level based on battery temperature Conne...

Page 8: ...ttery voltage 12 to determine the DC amps required STEP 3 Estimate Battery Amp Hours Required for operation unsupported by the alternator Multiply the DC amps required from step 2 above by the number...

Page 9: ...ide weather conditions Using the measurements from the diagram install two user supplied 6 mm fasteners into a rigid horizontal surface leaving the heads slightly raised Slide the Inverter Charger for...

Page 10: ...listed fuse s and fuse block s within 18 inches of the battery The fuse s rating must equal or exceed the Minimum DC Fuse Rating listed in your Inverter Charger s specifications See Specifications fo...

Page 11: ...ug on the unit In any case the incoming conduit must be bonded to earth or vehicle ground and the incoming conduit must be bonded to the outgoing conduit 1 2 3 4 5 AC Input Output Connection HOT IN NE...

Page 12: ...you will need to manually reset the unit by moving the Operating Mode Switch to OFF for two seconds then returning it to AUTO REMOTE False reading due to undersized or Use sufficient size DC cable suf...

Page 13: ...1111 W 35th Street Chicago IL 60609 USA 773 869 1234 USA 773 869 1212 International www tripplite com...

Reviews: