THORLABS PDB440A Operation Manual Download Page 12

© 2019 Thorlabs

10

PDB440x and PDB450x detectors

3.6   CMRR and Frequency Response

An  important  specification  for  balanced  amplifiers  is  the  Common  Mode  Rejection  Ratio
(CMRR) that reflects the ability to suppress common mode noise. 

In the setup as described below, the Device under Test (DuT) - here a PDB440x and PDB450x
detectors balanced detector - is tested for CMRR. A common mode signal is generated, which
is canceled out when the amplifier is in balanced mode. 

A network analyzer is used as signal generator (output A) and receiver (input B) The receiver is
synchronized  with  the  signal  generator  and  measures  selectively  at  the  same  frequency.  A
laser light source is modulated by the signal generator (port A) and acts as transmitter. To the
laser  output  a  3  dB  fusion  coupler  is  connected,  splitting  the  modulated  light  signal  into  two
paths.Depending on the measurement task, one or both coupler outputs are connected to the
inputs of the DuT, for example using S120-FC adapters. One of the DuT's outputs is connected
to the network analyzers Port B. 

Frequency response measurements

The frequency response of each signal path can be measured by connecting only one coupler
output  to  the  appropriate  input.  This  way,  the  frequency  response  curves  of  the  RF  OUTPUT
from  INPUT  +  and  INPUT-  can  be  measured,  as  well  as  the  frequency  responses  of  the
MONITOR outputs, as shown in the individual technical data.

CMRR measurement

For Common Mode Rejection measurement, both outputs of the fusion coupler are connected
to both inputs of the DuT.  The  optical  power  level  at  both  inputs  must  be  well  matched  ("bal-
anced") in order to achieve the optimal common mode suppression. Now the common mode re-
jection  can  be  measured  as  a  function  of  frequency.  The  frequency  response  of  the  RF
OUTPUT must be considered when calculating the CMRR - it is the difference between the RF
OUTPUT signal at a given frequency and the measured common mode or balanced output sig-
nal - at the same frequency. Typical measurement curves can be found in the individual tech-
nical data.

Summary of Contents for PDB440A

Page 1: ...Balanced Amplified Photodetectors PDB440A PDB440A AC PDB440C PDB440C AC PDB450A PDB450A AC PDB450C PDB450C AC Operation Manual 2019...

Page 2: ...Version Date Item No 2 4 08 Apr 2019 M0009 510 1043 Copyright 2019 Thorlabs...

Page 3: ...Electrical Outputs 9 3 4 Mounting 9 3 5 AC Coupling of the Outputs 10 3 6 CMRR and Frequency Response 11 3 7 Recommendations 4 Maintenance and Service 12 5 Appendix 13 14 5 1 Technical Data 16 5 1 1 P...

Page 4: ...nternational partners are looking forward to hearing from you Thorlabs GmbH Warning Sections marked by this symbol explain dangers that might result in personal injury or death Always read the associa...

Page 5: ...ing the equipment is the responsibility of the assem bler of the system All statements regarding safety of operation and technical data in this instruction manual will only apply when the unit is oper...

Page 6: ...peration manual 2 2 Preparation Note Prior to operation please check if the indicated line voltage range on the power supply matches with your local mains voltage If you want use your own power supply...

Page 7: ...a digital voltmeter or other low frequency measurement device After finishing measurements turn the power supply off Note To prevent saturation of the balanced amplifier make sure that the power diffe...

Page 8: ...r Corning SMF28TM single mode fibers with PC connectors When using FC APC connectors minimal alignment errors may occur due to the small detector size this may result in reduced output signal In this...

Page 9: ...detector mode the RF OUTPUT swing de pends on which INPUT is used it is positive for INPUT and negative for INPUT Please be aware that PDB440 and PDB450 have opposite optical input connectors for and...

Page 10: ...e output signal should not exceed the maximum output voltage to avoid saturation Therefore the optical input power or the power difference between the optical inputs should not exceed CW Saturation Po...

Page 11: ...s to improve the measurement capabilities in applications where a compar ably weak frequency modulated signal shall be measured on a strong CW background signal which could saturate the amplifier With...

Page 12: ...e inputs of the DuT for example using S120 FC adapters One of the DuT s outputs is connected to the network analyzers Port B Frequency response measurements The frequency response of each signal path...

Page 13: ...nt for common mode noise suppression especially at higher frequencies Any path length difference will introduce a phase difference between the two signals which will decrease the noise reduction capab...

Page 14: ...ects the photodiode Attention To avoid damage to the instrument do not expose it to spray liquids or solvents The unit does not need a regular maintenance by the user It does not contain any modules a...

Page 15: ...o NEP Noise Equivalent Power is the minimum input optical power to generate a photo cur rent equal to the RMS noise current in a 1 Hz bandwidth NEP is essentially the minimum detectable power It is st...

Page 16: ...4 6V 1 10V 1 MONITOR Outputs Impedance 220 W Voltage Swing max 10 V high impedance load 1 55 V 50 W load Bandwidth DC to 1 MHz Conversion Gain 10 V mW peak responsivity Voltage Noise 180 VRMS DC Offs...

Page 17: ...al Detector responsivity curves Typical Si Detector responsivity PDB440A PDB450A Typical InGaAs Detector responsivity PDA440C PDB450C Typical Monitor Output Frequency Response PDB440 and PDB450 Series...

Page 18: ...CMRR 35 dB RF OUTPUT Transimpedance Gain 1 51 103 V A RF OUTPUT Conversion Gain 2 27 103 V W 51 103 V W RF OUTPUT DC Offset 3 mV CW Saturation Power 130 W 820 nm 70 W 1550 nm Minimum NEP DC to 15 MHz...

Page 19: ...2019 Thorlabs 5 Appendix 17 PDB440A RF OUTPUT Spectral Noise PDB440A RF OUTPUT Spectral Noise PDB440C Typical RF OUTPUT Frequency Response PDB440C Typical RF OUTPUT Frequency Response...

Page 20: ...2019 Thorlabs 18 PDB440x and PDB450x detectors PDB440C RF OUTPUT Spectral Noise PDB440C RF OUTPUT Spectral Noise...

Page 21: ...1 105 V W 1 106 V W 1 107 V W RF OUTPUT DC Offset 15 mV CW Saturation Power 9 mW 820 nm 4 5 mW 1550 nm Minimum NEP DC to 0 1 MHz Gain 107 V A DC to 0 3 MHz Gain 106 V A DC to 4 MHz Gain 105 V A DC to...

Page 22: ...PDB450x detectors PDB450A RF OUTPUT Spectral Noise PDB450A RF OUTPUT Spectral Noise at different gain settings PDB450C Typical RF OUTPUT Frequency Response PDB450C Typical RF OUTPUT Frequency Respons...

Page 23: ...2019 Thorlabs 5 Appendix 21 PDB450C RF OUTPUT Spectral Noise PDB450C RF OUTPUT Spectral Noise at different gain settings...

Page 24: ...2019 Thorlabs 22 PDB440x and PDB450x detectors 5 2 Dimensions Mechanical Drawing PDB440...

Page 25: ...2019 Thorlabs 5 Appendix 23 Mechanical Drawing PDB450...

Page 26: ...2019 Thorlabs 24 PDB440x and PDB450x detectors 5 3 Certifications and Compliances...

Page 27: ...ion manual or the technical data of the de scribed unit at any time 5 5 Copyright and Exclusion of Reliability Thorlabs has taken every possible care in preparing this document We however assume no li...

Page 28: ...zil Tel 55 16 3413 7062 Fax 55 16 3413 7064 www thorlabs com Email brasil thorlabs com Japan Thorlabs Japan Inc 3 6 3 Kitamachi Nerima ku Tokyo 179 0081 Japan Tel 81 3 6915 7701 Fax 81 3 6915 7716 www...

Page 29: ...www thorlabs com...

Reviews: