background image

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Audio

www.ti.com/audio

Communications and Telecom

www.ti.com/communications

Amplifiers

amplifier.ti.com

Computers and Peripherals

www.ti.com/computers

Data Converters

dataconverter.ti.com

Consumer Electronics

www.ti.com/consumer-apps

DLP® Products

www.dlp.com

Energy and Lighting

www.ti.com/energy

DSP

dsp.ti.com

Industrial

www.ti.com/industrial

Clocks and Timers

www.ti.com/clocks

Medical

www.ti.com/medical

Interface

interface.ti.com

Security

www.ti.com/security

Logic

logic.ti.com

Space, Avionics and Defense

www.ti.com/space-avionics-defense

Power Mgmt

power.ti.com

Transportation and

www.ti.com/automotive

Automotive

Microcontrollers

microcontroller.ti.com

Video and Imaging

www.ti.com/video

RFID

www.ti-rfid.com

Wireless

www.ti.com/wireless-apps

RF/IF and ZigBee® Solutions

www.ti.com/lprf

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2011, Texas Instruments Incorporated

Summary of Contents for UCC28610EVM-474

Page 1: ...Using the UCC28610EVM 474 User s Guide Literature Number SLUU383B November 2009 Revised May 2011 ...

Page 2: ... regulated output voltage of 12 VDC at a load current of up to 2 1 A The converter will transition through three operating modes green mode GM amplitude modulation AM and frequency modulation FM depending upon the power level and FB current In FM mode the on time is fixed resulting in a fixed peak primary current at each cycle and the switching frequency is increased with increasing load In AM mod...

Page 3: ...lows Fully Integrated Current Control Without an External Sense Resistor Multiple Operating Modes for Optimum Efficiency Over entire Operating Range Over Current Protection to Limit RMS Input and Output Current Timed overload with Shutdown Retry Response Opto Less Output Overload Protection CAUTION High voltage levels are present on the evaluation module whenever it is energized Proper precautions...

Page 4: ...UT Output current VIN min to max 0 2 1 A IOCP Output over current VIN max 3 A inception point VOVP Output OVP IOUT min to max 16 V Transient response voltage IOUT min to max 500 mV over shoot SYSTEM CHARACTERISTICS fSW Switching frequency 26 3 140 4 kHz hPEAK Peak efficiency VIN 115 VRMS IOUT 1 05 A 85 7 No load power consumption VIN 115 VRMS 67 mW VIN 230 VRMS 107 Operating temperature VIN min to...

Page 5: ...or the schematic list of materials and board layout The EVM revision code can be found on the lower right corner of the top side of the board as shown in Figure 1 Figure 1 Placement of Revision Code for the Evaluation Module 5 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorpo...

Page 6: ...ment www ti com Figure 2 UCC28610EVM 474 Schematic 6 UCC28610EVM 474 25 W Universal Off Line Flyback Converter SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 7: ...try is composed of gate drive resistor R10 used for damping oscillations during turn on Resistor R16 and diode D8 are required to provide a current path at turn off because the gate is shorted to the source of the HV MOSFET during each switching cycle For circuits that experience high ringing on VGG at turn off R16 can be replaced with a ferrite bead Capacitors C8 and C10 are decoupling capacitors...

Page 8: ...apable of sinking 0 to 3 ADC at 12 VDC shall be used For highest accuracy VOUT can be monitored by connecting a DC voltmeter DMM V1 directly across the Vout and Vout terminals as shown in Figure 3 and Figure 4 A DC current meter DMM A1 should be placed in series with the electronic load for accurate output current measurements Power Meter The power analyzer shall be capable of measuring low input ...

Page 9: ...VM Test Set Up 5 2 Recommended Test Set Up for Operation Without a Load Figure 3 UCC28610EVM 474 Recommended Test Set Up Without a Load 5 3 Recommended Test Set Up for Operation With a Load Figure 4 UCC28610EVM 474 Recommended Test Set Up With a Load 9 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011...

Page 10: ...ary side power ground TP4 QGND Primary side signal ground TP5 LOOP Loop injection point EVM output TP6 LOOP Loop injection point J1 1 Neutral Neutral input from the AC source J1 2 Earth Earth reference from the AC source J1 3 AC Line Line input from AC source J2 1 Vout Positive output terminal of the EVM to the load J2 2 Vout Return connection of the EVM output to the load 10 UCC28610EVM 474 25 W ...

Page 11: ...and 265 VAC 3 Turn on the AC source 4 Monitor the output voltage on DMM V1 5 Monitor the output current on DMM A1 6 The EVM is now ready for testing 6 2 No Load Power Consumption 1 Use the test set up shown in Figure 3 a Set the power analyzer to external shunt mode b Set the appropriate current scale factor for using an external shunt on the power analyzer A 10 Ω shunt scales at 10 000 mV A for t...

Page 12: ...ed before handling the EVM 6 4 Output Voltage Ripple 1 Expose the ground barrel of the scope probe Insert the tip of the probe into the plated via located on the Vout pad of the EVM TP1 and lean the probe so that the exposed ground barrel is resting on the test point on the Vout pad of the EVM TP2 for a tip and barrel measurement as shown in the example depicted in Figure 5 2 Apply power to the EV...

Page 13: ... t P o w e r m W www ti com Performance Data and Typical Characteristic Curves 7 Performance Data and Typical Characteristic Curves Figure 6 through Figure 23 present typical performance curves for the UCC28610EVM 474 Figure 6 Efficiency as a Function of Load Current and Input Voltage Figure 7 No Load Input Power as a Function of Input Voltage 13 SLUU383B November 2009 Revised May 2011 UCC28610EVM...

Page 14: ...0 200 250 300 350 IFB uA F s w k H z 85Vac 115Vac 230Vac 265Vac Performance Data and Typical Characteristic Curves www ti com Figure 8 DRV Current as a Function of FB Current Figure 9 Switching Frequency as a Function of FB Current 14 UCC28610EVM 474 25 W Universal Off Line Flyback Converter SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments...

Page 15: ... as a Function of Load Current and Line Voltage Note the shutdown retry threshold for each line voltage Figure 11 Start Up Waveform Input voltage 115 VAC full load Ch 1 bulk input voltage 100 V div Ch 2 VGG 10 V div Ch 3 VDD 10V div Ch 4 DRV 10V div 15 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011...

Page 16: ...SFET 100 V div Ch 3 ZCD 5 V div Figure 13 AM Mode Switching Cycle Waveform Input voltage 85 VAC 0 3 A load fSW 28 2 kHz Ch 1 IDRV 500 mA div IDRV 1 1 A Ch 2 Drain of HV MOSFET 100 V div Ch 3 ZCD 5 V div Ch 4 VDD 10 V div 16 UCC28610EVM 474 25 W Universal Off Line Flyback Converter SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporat...

Page 17: ...40 mA Ch 2 Drain of HV MOSFET 100 V div Ch 3 ZCD 5 V div Ch 4 VDD 10 V div Figure 15 Ripple on VGG and VDD During Green Mode Operation Ch 3 VGG AC coupled 2 V div Ch 4 VDD AC coupled 200 mV div 17 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 18: ...o load Ch 2 VOUT AC coupled 20 mV div Figure 17 Output Voltage Ripple During Frequency Modulation Mode Input voltage 85 VAC full load Ch 2 VOUT AC coupled 20 mV div 18 UCC28610EVM 474 25 W Universal Off Line Flyback Converter SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 19: ...19 Brown Out Protection MOT shutdown retry response triggered at full load when input voltage dropped to 72 4 VAC Note the 750 ms tRETRY Ch 1 IDRV Ch 3 VDD 10 V div Ch 4 VGG 10 V div 19 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 20: ... overload fault tOL and retries after tRETRY 750 ms Input voltage 85 VAC Ch 1 IOUT 1 A div Ch 3 VOUT 1 V div Figure 21 Output Over Voltage Protection The EVM was tested with an open FB loop no load OVP threshold is equal to 15 44 V Ch 3 VOUT 2 V div offset by 4 V 20 UCC28610EVM 474 25 W Universal Off Line Flyback Converter SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyr...

Page 21: ...d B 180 120 60 0 60 120 180 P h a s e d e g r e e s Gain Phase www ti com Performance Data and Typical Characteristic Curves Figure 22 Bode Plot Input voltage 115 VAC full load Figure 23 Bode Plot Input voltage 230 VAC full load 21 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011 Texas Instruments In...

Page 22: ... 24 through Figure 26 show the design of the UCC28610EVM 474 printed circuit board Figure 24 Top Layer Component Placement 22 UCC28610EVM 474 25 W Universal Off Line Flyback Converter SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 23: ...wing and Layout Figure 25 Bottom Layer Routing Figure 26 Bottom Layer Component Placement 23 SLUU383B November 2009 Revised May 2011 UCC28610EVM 474 25 W Universal Off Line Flyback Converter Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 24: ...electrolytic 680 µF 25 V 20 2 C15 C16 EEU FM1E681 Panasonic 10 x 25 mm 1 D1 Diode bridge 1 A 600 V DF06M Diodes Inc 1 D2 Diode ultra fast 1 A 200 V SMA MURA120T3G On Semiconductor Rohm 1 D3 Diode schottky 100 mA 40 V SOD 323 RB501V 40TE 17 Semiconductor 1 D4 Diode Zener 25 V 500 mW SOD 123 MMSZ5253BT1G On Semiconductor Diode fast recovery glass passivated 1 A 1 kV Micro Commercial 1 D5 UF4007 TP D...

Page 25: ... Std 1 R13 Resistor chip 20 5 Ω 1 10 W 1 0603 Std Std 1 R14 Resistor chip 1 00 kΩ 1 10 W 1 0603 Std Std 1 R15 Resistor chip 681 Ω 1 10 W 1 0603 Std Std 1 R16 Resistor chip 0 Ω 1 10 W 1 0603 Std Std 1 R19 Resistor metal film 1 00 kΩ 1 4 W 1 TH 400 Std Std 1 T1 Transformer flyback 220 µH PQ20 20 58P6936 Vitec Electronics 1 U1 Green mode flyback controller SO 8 UCC28610D Texas Instruments Optocoupler...

Page 26: ...ion of the evaluation module The Rev A version of the EVM includes differential mode inductors L2 and L3 Subsequent revisions of the EVM replaced these inductors with a short circuit Figure 27 UCC28610EVM 474 Rev A Schematic 26 SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 27: ...4 Rev A Figure 28 Top Side View of UCC28610EVM 474 Rev A Figure 29 Top Layer Component Placement for UCC28610EVM 474 Rev A 27 SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 28: ... 30 Bottom Layer Routing of UCC28610EVM 474 Rev A Figure 31 Bottom Layer Component Placement of UCC28610EVM 474 Rev A 28 SLUU383B November 2009 Revised May 2011 Submit Documentation Feedback Copyright 2009 2011 Texas Instruments Incorporated ...

Page 29: ...µF 25 V 20 10 2 C15 C16 EEU FM1E681 Panasonic x 25 mm 1 D1 Diode bridge 1 A 600 V DF06M Diodes Inc 1 D2 Diode ultra fast 1 A 200 V SMA MURA120T3G On Semiconductor 1 D3 Diode Schottky 100 mA 40 V SOD 323 RB501V 40TE 17 Rohm Semiconductor 1 D4 Diode Zener 500 mW 25 V SOD 123 MMSZ5253BT1G On Semiconductor 1 D5 Diode fast recovery glass passivated 1 A 1 kV DO 41 UF4007 TP Micro Commercial Co 1 D6 Diod...

Page 30: ...5 Vishay Dale R9 A 1 R10 Resistor chip 15 4 W 1 8 W 1 0805 Std Std 1 R11 Resistor chip 64 9 kΩ 1 2 W 1 2010 Std Std 1 R12 Resistor chip 33 2 Ω 1 W 5 2512 Std Std 1 R13 Resistor chip 20 5 Ω 1 10 W 1 0603 Std Std 1 R14 Resistor chip 1 00 kΩ 1 10 W 1 0603 Std Std 1 R15 Resistor chip 681 Ω 1 10 W 1 0603 Std Std 1 R16 Resistor chip 0 Ω 1 10 W 1 0603 Std Std 1 R19 Resistor metal film 1 00 kΩ 1 4 W 1 TH ...

Page 31: ...afety information about temperatures and voltages For additional information on TI s environmental and or safety programs please contact the TI application engineer or visit www ti com esh No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine process or combination in which such TI products or services might be or are used FCC W...

Page 32: ...horized for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have executed an agreement specifically governing such use Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications and acknowledge ...

Reviews: