Texas Instruments UCC25630-1EVM-291 User Manual Download Page 12

List of Terminals

www.ti.com

12

SLUUBQ8B – August 2017 – Revised January 2017

Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Using the UCC25630-1EVM-291

Table 3. Test Points (continued)

TEST POINTS

NAME

DESCRIPTION

TP17

INJECT1

Small signal injection terminal

TP18

INJECT2

Small signal injection terminal

TP19

BW

Bias winding voltage sense

TP20

RVCC

Regulated 12-V supply

TP21

VCC

Supply input

TP22

LL/SS

Soft-start and light-load burst mode threshold

TP23

VOUT_N

Output voltage return terminal

7

List of Terminals

Table 4. Terminals

TERMINAL

NAME

DESCRIPTION

J1

AC Input

3-pin, AC power input, 85 V to 265 V

J2

VIN_P

Input voltage positive terminal

J3

VIN_N

Input voltage return terminal

J4

DISABLE

External disable terminal

J5

VOUT

Output voltage terminal, 4-pin

8

Test Procedure

1. Refer to

Figure 3

for basic setup. The required equipment for this measurement is listed in

Section 5.1

.

2. Before making electrical connections, visually check the board to make sure there are no suspected

spots of damage.

3. Keep the DC voltage source output off, connect it to J2 (+) and J3 (-). The DC voltage source should

be isolated and meet the IEC60950 requirement. Set the DC output voltage within the range specified
in

Table 1

, between 340 VDC and 410 VDC; set the DC source current limit to 1 A.

NOTE:

The board has no fuse installed and relies on the external voltage source current limit to

ensure circuit protection.

4. Connect an electronic load set to either constant current mode or constant resistance mode. The load

current range is from 0 A to 10 A.

5. Keep the AC voltage source output off, connect it to J1 with AC_line to J1-1, AC_earth to J1-2,

AC_neutral to J1-3. The AC voltage source should be isolated and meet the IEC60950 requirement.
Set the AC output voltage in the range specified in

Table 1

, between 85 VAC and 264 VAC; set the AC

source current limit to 200 mA.

6. If the load does not have a current or a power display, a current meter needs to be inserted between

the load and the board.

7. Connect a voltage meter across the load and set the meter’s scale to 20 VDC.

8. Turn on the AC voltage source output.

9. Turn on the DC voltage source output. Then the measurements can be made.

8.1

Equipment Shutdown

1. Shut down AC voltage source.

2. Shut down DC voltage source.

3. Shut down electronic load.

Summary of Contents for UCC25630-1EVM-291

Page 1: ...Using the UCC25630 1EVM 291 User s Guide Literature Number SLUUBQ8B August 2017 Revised January 2017 ...

Page 2: ...up 9 5 1 Test Equipment 9 5 2 Recommended Test Setup at No Load 10 5 3 Recommended Test Setup With Load 11 6 List of Test Points 11 7 List of Terminals 12 8 Test Procedure 12 8 1 Equipment Shutdown 12 9 Performance Data and Typical Characteristic Curves 13 9 1 Efficiency 13 9 2 Load Regulation 13 9 3 Output Turn On 14 9 4 Load Transient 15 9 5 Output Voltage Ripple 16 9 6 Burst Mode at Light Load ...

Page 3: ...d 10 A to No Load 0 A Transient Ch1 Iout Ch3 Vout 15 10 Output Voltage Ripple at Vin 390 V and 10 A Load 16 11 Burst Mode at Vin 390 V and 100 mA Load Ch3 Vout Ch4 LO 16 12 Voltage on Resonant Capacitor Vin 390 V and 10 A Load Ch1 VRES Ch4 LO 17 13 X Cap Discharge 17 14 Bode Plot at Vin 390 V and 10 A Load 18 15 Switching Frequency vs Load Vin 390 V 18 16 UCC25630 1EVM 291 Top Layer Assembly Drawi...

Page 4: ...EVM and its interface electronics are energized indicating operation of accessible high voltages may be present for the purpose of protecting inadvertent access 4 All interface circuits power supplies evaluation modules instruments meters scopes and other related apparatus used in a development environment exceeding 50Vrms 75VDC must be electrically located within a protected Emergency Power Off E...

Page 5: ...ter with LLC controller UCC256301 UCC25630 1EVM 291 accepts DC line input from 340 VDC to 410 VDC AC input voltage from 85 VAC to 264 VAC and a nominal output of 12 VDC with a full load output power of 120 W or a full output current of 10 A NOTE This EVM does not have an input fuse and relies on an input current limit from its input voltage source 2 1 Typical Applications Digital TV SMPS AC DC Pow...

Page 6: ...U1 with UCC256302 Remove D1 D2 Connect TP10 to TP5 2 4 Using the EVM with UCC256303 UCC25630 1EVM 291 is designed for UCC256301 With a slightly modification this EVM can be used for UCC256303 To use this EVM with UCC256303 Replace U1 with UCC256303 Remove R11 D4 Connect pin1 HV of U1 to PGND Connect external bias 11 25V 26V to TP21 2 5 Using the EVM with UCC256304 To use this EVM with UCC256304 Re...

Page 7: ...nt Input 340 VDC full load 10 A 0 383 A Input DC current Input 390 VDC full load 10 A 0 331 A Input DC current Input 410 VDC full load 10 A 0 315 A OUTPUT CHARACTERISTICS VOUT Output voltage No load to full load 10 A 12 VDC IOUT Output load current 340 to 410 VDC 10 A Output voltage ripple 390 VDC and full load 10 A 130 mVpp SYSTEM CHARACTERISTICS Switching frequency 53 160 kHz Peak efficiency 390...

Page 8: ...P8 TP9 22µF C24 0 022µF C8 1 5 µF C2 402k R15 732k R14 357 R13 PGND PGND 1 65k R10 1 65k R9 0 R24 TP17 TP18 10 0 R5 10 0 R6 5 11k R7 5 11k R8 10 0M R28 TP13 60V D4 6 04k R23 NC 8 NC 11 5 1 10 3 12 7 9 6 NC 2 NC 4 T1 J2 J3 150pF C11 TP20 TP16 TP15 1 2 4 3 U3 VO618A 3 PGND 2 00k R19 SGND J4 External disable 22µF C25 22µF C26 22µF C27 1 2 3 D6 STPS41H100CTY 1 2 3 D7 STPS41H100CTY D5 ES1JAF 47µF C1 J1...

Page 9: ...n requirement DC Digital Multimeter One unit capable of 0 VDC to 450 VDC input range four digit display preferred and one unit capable of 0 VDC to 20 VDC input range four digit display preferred Output Load DC load capable of receiving 0 VDC to 20 VDC 0 A to 15 A and 0 W to 200 W or greater with the capability to display things such as load current and load power Current Meter DC optional in case ...

Page 10: ...ltage meter does not flow through the current meter Also do not connect oscilloscope probes or any other sensing devices to the unit while measuring no load power as these can provide a path for common mode current to flow This causes an error in the measurements During the no load test the current meter should be set to long averaging mode and a few minutes should be allowed for the reading to be...

Page 11: ...VM unattended 6 List of Test Points Table 3 Test Points TEST POINTS NAME DESCRIPTION TP1 EARTH AC earth TP2 VIN_N Input voltage return terminal TP3 AC_N AC neutral TP4 AC_L AC line TP5 VIN_P Input voltage positive terminal TP6 BLK Input voltage sensing TP7 HS Primary side switch node or the intersection of Q1 and Q2 TP8 HO Primary side high side MOSFET gate Q1 TP9 LO Primary side low side MOSFET g...

Page 12: ...urce output off connect it to J2 and J3 The DC voltage source should be isolated and meet the IEC60950 requirement Set the DC output voltage within the range specified in Table 1 between 340 VDC and 410 VDC set the DC source current limit to 1 A NOTE The board has no fuse installed and relies on the external voltage source current limit to ensure circuit protection 4 Connect an electronic load set...

Page 13: ...eristic Curves 13 SLUUBQ8B August 2017 Revised January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 9 Performance Data and Typical Characteristic Curves Figure 4 through Figure 15 present typical performance curves for UCC25630 1EVM 291 9 1 Efficiency Figure 4 UCC25630 1EVM 291 Efficiency 9 2 Load Regulation Figure 5 UCC25630 1EVM 291...

Page 14: ...SLUUBQ8B August 2017 Revised January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 9 3 Output Turn On Figure 6 Output Turn On at 390 VDC with Full Load 10 A Figure 7 Output Turn On at 390 VDC with No Load ...

Page 15: ...2017 Revised January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 9 4 Load Transient Figure 8 No Load 0 A to Full Load 10 A Transient Ch1 Iout Ch3 Vout Figure 9 Full Load 10 A to No Load 0 A Transient Ch1 Iout Ch3 Vout ...

Page 16: ...January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 9 5 Output Voltage Ripple Figure 10 Output Voltage Ripple at Vin 390 V and 10 A Load 9 6 Burst Mode at Light Load Figure 11 Burst Mode at Vin 390 V and 100 mA Load Ch3 Vout Ch4 LO ...

Page 17: ...7 Revised January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 9 7 Voltage on Resonant Capacitor Figure 12 Voltage on Resonant Capacitor Vin 390 V and 10 A Load Ch1 VRES Ch4 LO 9 8 X Cap Discharge Figure 13 X Cap Discharge ...

Page 18: ...1EVM 291 Test condition VAC 264 VRMS disconnected AC randomly discharge time from 373 VAC to below 30 V 700 ms 9 9 Bode Plot Figure 14 Bode Plot at Vin 390 V and 10 A Load 9 10 Switching Frequency vs Load Figure 15 Switching Frequency vs Load Vin 390 V 10 EVM Assembly Drawing and PCB Layout Figure 16 through Figure 19 show the design of the UCC25630 1EVM 291 printed circuit board PCB dimensions L ...

Page 19: ...t 2017 Revised January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 Figure 16 UCC25630 1EVM 291 Top Layer Assembly Drawing Top View Figure 17 UCC25630 1EVM 291 Bottom Layer Assembly Drawing Bottom View ...

Page 20: ... 20 SLUUBQ8B August 2017 Revised January 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated Using the UCC25630 1EVM 291 Figure 18 UCC25630 1EVM 291 Top Copper Top View Figure 19 UCC25630 1EVM 291 Bottom Copper Top View ...

Page 21: ... V 10 X7R 1206 C1206C225K4RACTU Kemet C19 0 Capacitor ceramic 10 pF 50 V 5 C0G NP0 0603 06035A100JAT2A AVX C20 C21 C22 C23 4 Capacitor aluminum 470 µF 35 V 20 TH 35ZL470MEFC10X20 Rubycon C24 C25 C26 C27 4 Capacitor ceramic 22 µF 35 V 20 X5R 0805 C2012X5R1V226M12 5AC TDK C28 1 Capacitor ceramic 0 047 µF 16 V 10 X7R 0603 GRM188R71C473KA 01D MuRata C29 0 Capacitor ceramic 10 pF 50 V 5 C0G NP0 0603 06...

Page 22: ...35K11FKE A Vishay Dale R9 R10 R11 3 Resistor 1 65 kΩ 1 0 25 W 1206 CRCW12061K65FKE A Vishay Dale R12 R27 R28 R29 4 Resistor 10 0 MΩ 1 0 25 W 1206 CRCW120610M0FKE A Vishay Dale R13 1 Resistor 357 Ω 1 0 25 W 1206 CRCW1206357RFKE A Vishay Dale R14 1 Resistor 732 kΩ 1 0 1 W 0603 CRCW0603732KFKE A Vishay Dale R15 1 Resistor 402 kΩ 1 0 1 W 0603 CRCW0603402KFKE A Vishay Dale R16 1 Resistor 2 2 Ω 5 0 1 W ...

Page 23: ... Driver DDB0014A UCC256301DDB Texas Instruments U2 U3 2 Optocoupler 5 3 kV 50 600 CTR TH VO618A 3 Vishay Semiconductor U4 1 Low Voltage Adjustable Precision Shunt Regulator 80 mA 40 to 125 degC 3 pin SOT 89 PK Green RoHS no Sb Br TLVH431AQPK Texas Instruments FID1 FID2 FID3 FID4 FID5 FID6 0 Fiducial mark There is nothing to buy or mount N A N A Revision History NOTE Page numbers for previous revis...

Page 24: ... TI Resource NO OTHER LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN including but not limited to any patent right copyright mask work right or other intellectual property right relating to any combination machine or process in which TI product...

Reviews: