background image

Description

www.ti.com

4

SLUUBS2A – November 2017 – Revised December 2017

Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

UCC21220EVM-009

2.2

I/O Description

Table 1

lists the test points and jumpers.

(1)

The UCC21220 device does not have dead time control. Pin 6 of the UCC21220 is not connected internally. J4 and optional
trimmer potentiometer are included to facilitate comparison of the UCC21220 device with other pin-to-pin compatible ISO drivers
which may have dead time control.

Table 1. Test Points and Jumpers

Pins

Description

TP1

Primary supply positive input

TP2

Primary supply negative input

TP3

VCC measurement point (main capacitor)

TP4

VCC measurement point (IC pins)

TP5

INA negative input (input side GND)

TP6

INB negative input (input side GND)

TP7

INA positive input

TP8

INB positive input

TP9

INA measurement point (IC pins)

TP10

INB measurement point (IC pins)

TP11

Input side GND (IC pins)

TP12

Disable pin input/measurement point

TP13

Dead time programming pin input/measurement point

(1)

TP14

VDDA measurement point (IC pins)

TP15

VSSA measurement point (IC pins)

TP16

A-channel supply positive input

TP17

A-channel output, measured after gate drive resistor

TP18

A-channel supply negative input

TP19

VDDB measurement point (IC pins)

TP20

VSSB measurement point (IC pins)

TP21

B-channel supply positive input

TP22

B-channel output, measured after gate drive resistor

TP23

B-channel supply negative input

J1-1

Connected to VCCI

J1-2

Connected to INA

J1-3

Connected to GND

J2-1

Connected to VCCI

J2-2

Connected to INB

J2-3

Connected to GND

J3-3

Connected to VCCI

J3-2

Connected to disable pin

J3-3

Connected to GND

J4-1

Connected to VCCI

J4-2

Dead time programming pin

(1)

J4-3

Connected to optional dead time programming potentiometer

(1)

Summary of Contents for UCC21220EVM-009

Page 1: ...Power Down 10 6 Schematic 11 7 Layout Diagrams 12 8 Bill of Materials 14 List of Figures 1 Jumpers Installation Position 7 2 Bench Setup Diagram and Configuration 8 3 Example Input and Output Waveforms Inputs CH1 and CH2 Outputs CH3 and CH4 9 4 Example Input and Output Waveforms Zoom In Inputs CH1 and CH2 Outputs CH3 and CH4 10 5 UCC21220EVM 009 Schematic 11 6 Top Overlay 12 7 Top Layer 12 8 Botto...

Page 2: ...ransient immunity CMTI greater than 100 V ns The device has an impressive propagation delay of 25 ns and the tightest channel to channel delay matching in the industry of less than 5 ns which enables high switching frequency high power density and efficiency The flexible universal capability of the UCC21220 device with up to 5 V VCCI and 18 V VDDA and VDDB allows it to be used as a low side high s...

Page 3: ...reepage distance between two output channels is maximized with a TO252 2 DPAK bootstrap diode which facilitates high voltage half bridge testing for a wide variety of power converter topologies For detailed device information see the UCC21220 4 A 6 A Dual Channel Isolated Gate Driver data sheet and Isolated Gate Driver Solutions from TI 2 1 Features Evaluation module for UCC21220 in SOIC 16 D pack...

Page 4: ...P7 INA positive input TP8 INB positive input TP9 INA measurement point IC pins TP10 INB measurement point IC pins TP11 Input side GND IC pins TP12 Disable pin input measurement point TP13 Dead time programming pin input measurement point 1 TP14 VDDA measurement point IC pins TP15 VSSA measurement point IC pins TP16 A channel supply positive input TP17 A channel output measured after gate drive res...

Page 5: ...ion C Jumper on J1 2 and J1 1 sets INA high J2 Option A Jumper not installed INB provided by external signal and this pin is low by default if left open Option A Option B Jumper on J2 2 and J2 3 sets INB low Option C Jumper on J2 2 and J2 1 sets INB high J3 Option A Jumper not installed Option C Option B Jumper on J3 2 and J3 3 sets DIS low part is enabled Option C Jumper on J3 2 and J3 1 sets DIS...

Page 6: ...ent 4 1 1 Power Supplies Three DC power supplies with voltage current above 18 V and 1 A respectively are required for example Agilent E3634A 4 1 2 Function Generators One 2 channel function generator over 20 MHz is required for example Tektronics AFG3252 4 2 Equipment Setup 4 2 1 DC Power Supply Settings DC power supply 1 Voltage setting 5 V Current limit 0 05 A DC power supply 2 Voltage setting ...

Page 7: ...elay High Low Output Impedance Channel 1 Pulse 10 MHz 50 0 ns 3 3 V 0 V High Z Channel 2 500 ns 4 2 4 Oscilloscope Setting Table 5 lists the oscilloscope setting Table 5 Oscilloscope Settings Bandwidth Coupling Termination Scale Settings Inverting Channel 1 500 MHz or above DC 1 MΩ or automatic 10 or automatic Off Channel 2 4 2 5 Jumper Shunt Settings The jumper on header J3 must be installed by t...

Page 8: ...unction generator channel 1 to TP7 INA and TP5 GND see Figure 2 3 Connect the function generator channel 2 to TP8 INB and TP6 GND see Figure 2 4 Power supply 1 Connect the positive lead to TP1 VCCIN Connect the negative lead to TP2 GND 5 Power supply 2 Connect the positive lead to the current meter input of DMM1 and connect the current meter output of DMM1 to TP16 VDDAIN Connect the negative lead ...

Page 9: ... The quiescent current on DMM1 and DMM2 should be approximately 1 mA to 3 mA if everything is set correctly 4 Enable the function generator outputs 5 Verify that the following occurs 1 Stable pulse output appears on channel 1 and channel 2 in the oscilloscope see Figure 3 2 Oscilloscope frequency measurement matches programmed function generator frequency 3 DMM1 and DMM2 currents should read 14 2 ...

Page 10: ...21220EVM 009 Figure 4 shows a zoomed in view of the example input and output waveforms Figure 4 Example Input and Output Waveforms Zoom In Inputs CH1 and CH2 Outputs CH3 and CH4 5 2 Power Down The following lists the procedure to power down the EVM 1 Disable the function generator 2 Disable power supplies 2 and 3 3 Disable power supply 1 4 Disconnect the cables and probes ...

Page 11: ... 4 DIS 5 NC 6 NC 7 VCCI 8 VSSB 9 OUTB 10 VDDB 11 NC 12 NC 13 VSSA 14 OUTA 15 VDDA 16 U1 UCC21220DR GND 1000pF 50V C10 DNP 1000pF 50V C13 DNP 0 01uF 100V C7 DNP GND 1 2 3 J1 TP20 TP15 VCCIN VCC VCC VCC VCC VCC VCC GND GND GND 50V 1000pF C6 GND TP18 TP17 TP16 VDDAIN VDDA VDDB TP23 TP21 TP22 VDDBIN TP19 TP6 TP7 TP10 TP11 TP9 TP12 TP13 0 22uF 50V C3 Copyright 2017 Texas Instruments Incorporated www ti...

Page 12: ...ncorporated Layout Diagrams www ti com 12 SLUUBS2A November 2017 Revised December 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated UCC21220EVM 009 7 Layout Diagrams Figure 6 Top Overlay Figure 7 Top Layer ...

Page 13: ...yout Diagrams 13 SLUUBS2A November 2017 Revised December 2017 Submit Documentation Feedback Copyright 2017 Texas Instruments Incorporated UCC21220EVM 009 Figure 8 Bottom Layer Flipped Figure 9 Bottom Overlay Flipped ...

Page 14: ...0 5 L no 4 40 Any 4 J1 J2 J3 J4 Header 100 mil 3 1 TH Any 1 R1 Resistor 1 00 Ω 1 0 125 W 0805 Any 1 R5 Resistor 2 2 Ω 5 0 125 W 0805 Any 2 R6 R8 Resistor 0 Ω 5 0 125 W 0805 Any 2 R7 R9 Resistor 2 2 Ω 5 0 1 W 0603 Any 2 SH1 SH2 Shunt 100 mil flash gold black Any 23 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 TP15 TP16 TP17 TP18 TP19 TP20 TP21 TP22 TP23 Test point miniature SMT Any ...

Page 15: ... for previous revisions may differ from page numbers in the current version Changes from Original November 2017 to A Revision Page Changed Test Points and Jumpers table and added table note 4 Changed Jumper Shunt Settings section and Jumpers Installation Position image 7 Changed Bench Setup Diagram section and Bench Setup Diagram and Configuration image 8 Changed Schematic image 11 Changed BOM tab...

Page 16: ...y set forth above or credit User s account for such EVM TI s liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repair such EVM or provide replacements Repaired EVMs shall be warr...

Page 17: ...the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated Antenna types not included in this list having a gain greater than the maximum gain indicated for that type are strictly prohibited for use with this device Concernant les EVMs avec antennes détachables Conformément à la réglementation d Industrie Canada le présent émetteur radio peut fo...

Page 18: ...ed loads Any loads applied outside of the specified output range may also result in unintended and or inaccurate operation and or possible permanent damage to the EVM and or interface electronics Please consult the EVM user guide prior to connecting any load to the EVM output If there is uncertainty as to the load specification please contact a TI field representative During normal operation even ...

Page 19: ...COST OF REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE LOSS OF DATA OR BUSINESS INTERRUPTION NO CLAIM SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE 12 MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED 8 2 Specif...

Page 20: ... TI Resource NO OTHER LICENSE EXPRESS OR IMPLIED BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN including but not limited to any patent right copyright mask work right or other intellectual property right relating to any combination machine or process in which TI product...

Page 21: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Texas Instruments UCC21220EVM 009 ...

Reviews: