background image

www.ti.com

Description

3

SLVUAR5 – May 2016

Submit Documentation Feedback

Copyright © 2016, Texas Instruments Incorporated

TPS92515HVEVM-749 High Current Buck LED Driver Evaluation Module

3

Description

The TPS92515HVEVM-749 provides a high-brightness LED driver based on the TPS92515 buck
regulator. It is designed to operate with an input voltage in the range of 5.5 V to 65 V. The EVM is set up
for a default output current of 1 A for an LED stack between approximately 3 V and nearly 65 V. The
TPS92515 helps provide high efficiency, fast PWM dimming, and accurate wide-range analog dimming.

3.1

Typical Applications

This converter design describes an application of the TPS92515 as an LED driver with the specifications
listed in

Table 1

For applications with a different input voltage range or different output voltage range refer

to the TPS92515 datasheet (

SLUSBZ6

).

3.2

Features

3.2.1

Connector Description

This section describes the connectors and test points on the EVM and how to properly connect, setup,
and use the TPS92515HVEVM-749.

3.2.1.1

J1, LED Current Setting

A three pin header, J1, is used to change the LED current default setting. The default setup is a shunt
placed between pins 1 and 2 resulting in an output current of 1 A. The shunt can be moved to pins 2 and
3 which will change the output current to 1.5 A. Alternatively, the output current can be adjusted by
applying a voltage to TP1 (IADJ) with the shunt removed.

3.2.1.2

J2, LED+, LED–/GND

The screw-down connector J2 is for connecting the LED load to the board. The leads to the LED load
should be twisted and kept as short as possible to minimize voltage drop, inductance, and EMI
transmission. Pin 1 of the connector is GND and LED– while pin 2 is LED+. This design is for
approximately 1 to 18 white LEDs.

3.2.1.3

J3, VIN, GND

The screw-down connector J3 is for connecting the EVM to the DC input voltage supply. The input supply
ground should be connected to pin 1 or 2 of J3 while the positive input is connected to pin 3.

3.2.1.4

TP1, IADJ

TP1 connects directly to the IADJ pin of the TPS92515. An analog voltage applied to IADJ will adjust the
peak inductor current level providing an analog dimming function.

3.2.1.5

TP3, PWM

The PWM test point connects directly to the PWM pin of the TPS92515. Leave R14 connected for normal
operation. If PWM dimming is used, remove R14 and apply a square wave with a low level of GND and a
high level of between 2.5 V and 5 V. The dimming frequency range is 100 Hz to 10k Hz.

3.2.2

High Speed Shunt FET Dimming

The TPS92515HVEVM-749 is capable of high speed shunt FET dimming for fast PWM dimming and/or
extended PWM dimming range. To implement shunt FET dimming use an externally driven FET across
the LED load placed as close to the LED load as possible to minimize parasitic inductance. The EVM will
need minor modifications to the OFF timer due to shorting the output. Remove R1 and populate R4, R7,
and D3 as shown and calculated in the TPS92515 datasheet.

Summary of Contents for TPS92515HVEVM-749

Page 1: ...S92515HVEVM 749 PCB Layout 11 8 Bill of Materials 12 List of Figures 1 TPS92515HVEVM 749 Schematic 5 2 Efficiency vs Input Voltage 6 3 Output Current vs PWM Duty Cycle 250 Hz 14 V Input 2 LEDs 6 4 Out...

Page 2: ...when unattended HOT SURFACE Caution Hot Surface Contact may cause burns Do not touch Please take the proper precautions when operating HIGH VOLTAGE Danger High Voltage Electric shock possible when co...

Page 3: ...pplying a voltage to TP1 IADJ with the shunt removed 3 2 1 2 J2 LED LED GND The screw down connector J2 is for connecting the LED load to the board The leads to the LED load should be twisted and kept...

Page 4: ...Test Conditions MIN TYP MAX Units Input Characteristics Voltage range 5 5 65 V Input current 2 5 A Output Characteristics Output voltage VOUT LED to LED GND 2 65 V Output current Setting IADJ using VC...

Page 5: ...PS92515QDGQRQ1 47 H L1 2 2 F C9 Iout 2A Max 100V 0 2A D3 DNP 309k R7 DNP GND 0 1 F C8 1 3 2 100V 3A D1 4 99k R8 DNP 0 R13 GND 100k R9 100k R10 1 2 3 J1 0 1 F C5 GND 38 3k R11 61 9k R12 1A 1 37V 1 88V...

Page 6: ...and Typical Characteristic Curves www ti com 6 SLVUAR5 May 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS92515HVEVM 749 High Current Buck LED Driver Evaluation Mo...

Page 7: ...rves 7 SLVUAR5 May 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS92515HVEVM 749 High Current Buck LED Driver Evaluation Module 6 3 Analog Dimming Figure 4 Output...

Page 8: ...ht 2016 Texas Instruments Incorporated TPS92515HVEVM 749 High Current Buck LED Driver Evaluation Module Figure 6 50 Duty Cycle 250 Hz PWM Dimming Top VSW Middle VPWM Bottom LED Current Input Voltage 1...

Page 9: ...ght 2016 Texas Instruments Incorporated TPS92515HVEVM 749 High Current Buck LED Driver Evaluation Module Figure 8 1 Duty Cycle 250 Hz PWM Dimming Top VSW Middle VPWM Bottom LED Current Input Voltage 2...

Page 10: ...SLVUAR5 May 2016 Submit Documentation Feedback Copyright 2016 Texas Instruments Incorporated TPS92515HVEVM 749 High Current Buck LED Driver Evaluation Module Figure 10 99 Duty Cycle 250 Hz PWM Dimming...

Page 11: ...s Instruments Incorporated TPS92515HVEVM 749 High Current Buck LED Driver Evaluation Module 7 TPS92515HVEVM 749 PCB Layout Figure 11 and Figure 12 show the design of the TPS92515HVEVM 749 printed circ...

Page 12: ...Diode Schottky 100 V 3 A AEC Q101 PowerDI5 PowerDI5 PDS3100Q 13 Diodes Inc D2 1 100V Diode Switching 100 V 0 2 A SOD 123 SOD 123 MMSD4148T1G ON Semiconductor L1 1 47uH Inductor Wirewound Ferrite 47 H...

Page 13: ...ing the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty If TI elects to repair or replace such EVM TI shall have a reasonable time to repa...

Page 14: ...transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indic...

Page 15: ...ified allowable ranges some circuit components may have elevated case temperatures These components include but are not limited to linear regulators switching transistors pass transistors current sens...

Page 16: ...REMOVAL OR REINSTALLATION ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES RETESTING OUTSIDE COMPUTER TIME LABOR COSTS LOSS OF GOODWILL LOSS OF PROFITS LOSS OF SAVINGS LOSS OF USE L...

Page 17: ...sponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related inf...

Reviews: