Texas Instruments TPS5420EVM-175 SWIFT User Manual Download Page 2

www.ti.com

1.2

Performance Specification Summary

1.3

Modifications

1.3.1

Output Voltage Set Point

R2

10 k

1.221 V

V

O

1.221 V

(1)

Introduction

TPS5420 package along with the gate drive circuitry. The low drain-to-source on resistance of the
MOSFET allows the TPS5420 to achieve high efficiencies and helps to keep the junction temperature low
at high output currents. The compensation components are provided internal to the integrated circuit (IC),
whereas an external divider allows for an adjustable output voltage. Additionally, the TPS5420 provides an
enable input. The absolute maximum input voltage is 36 V.

Table 1. Input Voltage and Output Current Summary

EVM

INPUT VOLTAGE RANGE

OUTPUT CURRENT RANGE

TPS5420EVM-175

VIN = 10 V to 36 V

0 A to 2 A

A summary of the TPS5420EVM-175 performance specifications is provided in

Table 2

. Specifications are

given for an input voltage of VIN = 12 V and an output voltage of 5 V, unless otherwise specified. The
TPS5420EVM-175 is designed and tested for VIN = 10 V to 36 V. The ambient temperature is 25

°

C for all

measurements, unless otherwise noted. Maximum input voltage for the TPS5420EVM-175 is 36 V.

Table 2. TPS5420EVM-175 Performance Specification Summary

SPECIFICATION

TEST CONDITIONS

MIN

TYP

MAX

UNIT

VIN voltage range

10

36

V

Output voltage set point

5.0

V

Output current range

V

IN

= 10 V to 36 V

0

2.5

A

Line regulation

I

O

= 1 A, VIN = 3 V - 6 V

±

0.11%

Load regulation

VIN = 25 V, I

O

= 0 A to 2.5 A

±

0.1%

Load transient response

Voltage change

I

O

= 0.75 A to 2.25 A

-40

mV

Recovery time

200

µ

s

Voltage change

I

O

= 2.25 A to 0.75 A

+40

mV

Recovery time

200

µ

s

Loop bandwidth

VIN = 25 V

25.0

kHz

Phase margin

VIN = 25 V

55

°

Input ripple voltage

I

O

= 3 A

275

300

mVpp

Output ripple voltage

32

mVpp

Output rise time

7

ms

Operating frequency

500

kHz

Maximum efficiency

VIN = 10 V, V

O

= 5 V, I

O

= 0.75 A

93.2%

The TPS5420EVM-175 is designed to demonstrate the small size that can be attained when designing
with the TPS5420. A few changes can be made to this module.

To change the output voltage of the EVM, it is necessary to change the value of resistor R2. Changing the
value of R2 can change the output voltage above 1.25 V. The value of R2 for a specific output voltage can
be calculated using

Equation 1

.

Table 3

lists the R2 values for some common output voltages. Note that VIN must be in a range so that

the minimum on-time is greater than 200 ns, and the maximum duty cycle is less than 87%. The values
given in

Table 3

are standard values, not the exact value calculated using

Equation 1

.

TPS5420EVM-175 SWIFT™ Regulator Evaluation Module

2

SLVU163 – April 2006

Submit Documentation Feedback

Summary of Contents for TPS5420EVM-175 SWIFT

Page 1: ...ints 3 5 TPS5420EVM 175 Bill of Materials 13 This user s guide contains background information for the TPS5420 as well as support documentation for the TPS5420EVM 175 evaluation module HPA175 Also included are the performance specifications the schematic and the bill of materials for the TPS5420EVM 175 The TPS5420 dc dc converter is designed to provide up to a 2 A continuous 3 A peak output from a...

Page 2: ...PECIFICATION TEST CONDITIONS MIN TYP MAX UNIT VIN voltage range 10 36 V Output voltage set point 5 0 V Output current range VIN 10 V to 36 V 0 2 5 A Line regulation IO 1 A VIN 3 V 6 V 0 11 Load regulation VIN 25 V IO 0 A to 2 5 A 0 1 Load transient response Voltage change IO 0 75 A to 2 25 A 40 mV Recovery time 200 µs Voltage change IO 2 25 A to 0 75 A 40 mV Recovery time 200 µs Loop bandwidth VIN...

Page 3: ...hould be 2 A Wire lengths should be minimized to reduce losses in the wires Test point TP1 provides a place to monitor the VIN input voltages with TP2 providing a convenient ground reference TP3 is used to monitor the output voltage with TP4 as the ground reference Table 4 EVM Connectors and Test Points Reference Designator Function J1 VIN 10 V to 36 V J2 OUT 5 V at 2 A maximum JP1 2 pin header fo...

Page 4: ...0 0 10 0 20 0 30 0 0 5 1 1 5 2 I Output Current A O Output Regulation Test Setup and Results Figure 1 Measured Efficiency TPS5420 The output voltage load regulation of the TPS5420EVM 175 is shown in Figure 2 the output voltage line regulation is shown in Figure 3 Measurements are given for an ambient temperature of 25 C Figure 2 Load Regulation 4 TPS5420EVM 175 SWIFT Regulator Evaluation Module SL...

Page 5: ...00 m VOUT 50 mV Div AC Coupled Test Setup and Results Figure 3 Line Regulation The TPS5420EVM 175 response to load transients is shown in Figure 4 The current step is from 25 to 75 of maximum rated load Total peak to peak voltage variation is as shown including ripple and noise on the output Figure 4 Load Transient Response TPS5420 SLVU163 April 2006 TPS5420EVM 175 SWIFT Regulator Evaluation Modul...

Page 6: ...sponse characteristics are shown in Figure 5 Gain and phase plots are shown for VIN voltage of 25 V and a 1 A load current Figure 5 Measured Loop Response TPS5420 VIN 25 V The TPS5420EVM 175 output voltage ripple is shown in Figure 6 The input voltage is VIN 25 V for the TPS5420 Output current is the rated full load of 2 A Voltage is measured directly across output capacitors Figure 6 Measured Out...

Page 7: ...en the input voltage reaches the internally set UVLO threshold voltage of 5 3 V the slow start sequence begins The internal reference begins to ramp up linearly at the internally set slow start rate towards 1 221 V and the output ramps up toward the set voltage of 5 V The output may be inhibited by using a jumper at JP1 to tie ENA to GND When the jumper is removed ENA is released and the slow star...

Page 8: ...e remaining pins of the TPS5420 and a large area filled with ground The bottom layer contains ground and some signal routing The top and bottom and internal ground traces are connected with multiple vias placed around the board including four vias directly under the TPS5420 device to provide a thermal path from the PowerPAD land to ground The input decoupling capacitors C1 and C4 and bootstrap cap...

Page 9: ...www ti com Board Layout Figure 10 Top Side Layout SLVU163 April 2006 TPS5420EVM 175 SWIFT Regulator Evaluation Module 9 Submit Documentation Feedback ...

Page 10: ...www ti com Board Layout Figure 11 Bottom Side Layout Looking From Top Side 10 TPS5420EVM 175 SWIFT Regulator Evaluation Module SLVU163 April 2006 Submit Documentation Feedback ...

Page 11: ...ls Schematic and Bill of Materials Figure 12 Top Side Assembly The TPS5420EVM 175 schematic and bill of materials are presented in this section SLVU163 April 2006 TPS5420EVM 175 SWIFT Regulator Evaluation Module 11 Submit Documentation Feedback ...

Page 12: ...Schematic and Bill of Materials The schematic for the TPS5420EVM 175 is shown in Figure 13 Figure 13 TPS5420EVM 175 Schematic TPS5420EVM 175 SWIFT Regulator Evaluation Module 12 SLVU163 April 2006 Submit Documentation Feedback ...

Page 13: ...7 x 0 25 ED1514 OST 1 JP1 Header 2 pin 100mil spacing 36 pin strip 0 100 x 2 PTC36SAAN Sullins 1 L1 33 µH Inductor SMT 2 2A 75milliohm 0 484 x 0 484 MSS1260 333 Coilcraft 1 R1 10 0 k Resistor Chip 1 16W 1 0603 Std Std 1 R2 3 24 k Resistor Chip 1 16W 1 0603 Std Std 1 R3 0 Resistor Chip 1 16W 1 0603 Std Std 4 TP1 TP3 Test Point Red Thru Hole Color Keyed 0 100 x 0 100 5000 Keystone TP5 TP6 2 TP2 TP4 ...

Page 14: ...armless against any damages liabilities or costs resulting from any claim suit or proceeding arising from user s handling or use of the EVM including but not limited to I claims that the EVM infringes a third party s intellectual property and ii claims arising from the user s use or handling of the EVM TI shall have no responsibility to defend any such claim suit or proceeding User assumes all res...

Page 15: ...onents include but are not limited to linear regulators switching transistors pass transistors and current sense resistors These types of devices can be identified using the EVM schematic located in the EVM User s Guide When placing measurement probes near these devices during operation please be aware that these devices may be very warm to the touch Mailing Address Texas Instruments Post Office B...

Page 16: ...tute a license from TI to use such products or services or a warranty or endorsement thereof Use of such information may require a license from a third party under the patents or other intellectual property of the third party or a license from TI under the patents or other intellectual property of TI Reproduction of information in TI data books or data sheets is permissible only if reproduction is...

Reviews: