background image

5V

Signal

Generator

Scope

Ch1

Ch2

JMP4

1

2
3

4

VCC

1
2

3

JMP14

D - input

of

SN65HVD95

Powering up the EVM and Taking Measurements

www.ti.com

Figure 4. Example for Stimulus and Probe Points with JMP4 and JMP14

Figure 4

gives an example for entering a data signal into the driver section of the Sympol™ transceiver.

The signal output of the generator is adjusted to 5V. The generator’s ground terminal is connected with pin
3, and the signal output terminal with pin 2 of JMP4. The data signal is measured via an oscilloscope with
its signal input connected to pin 1 and its ground wire connected to pin 2 and of JMP14.

The same set-up applies to the DE and RE inputs via their corresponding headers JMP2 and 12 and
JMP3 and 13. JMP1 however, must not receive a signal stimulus. Like JMP11, it represents the receiver
output, R, of the SN65HVD96.

Instead of using signal generators, the EVM can directly interface to micro controller I/O. Then the
non-assembled 50

resistors are of no concern. However, for proper operation, it must be assured that

the high-level input voltage V

IH

2 V and the low-level input voltage V

IL

0.8 V.

3

Powering up the EVM and Taking Measurements

The generally recommended procedure for taking measurements is listed:

1. Install the ground connections required.
2. Connect the oscilloscope with the respective probe points you want to measure.
3. Adjust the power-supply to 5 V.
4. Adjust the generator outputs for a 5 V maximum output signal level, or check the logic switching levels

of the controller I/O.

5. Connect the power supply conductor with pin 3 of TB1 and observe the blue LED (D1) turning on.
6. Connect signal conductors from the controller or the generator with their corresponding EVM inputs at

JMP2 to JMP4.

7. Logic high at the receiver output, R, will turn on the red LED (D3), and logic high at the driver input, D,

turns on the green LED (D2). If D is left open, an internal 100 k

pull-up resistor provides logic high

instead. However, due to the small input current, D2 will remain off.

3.1

Measurement Examples

Each of the following measurement examples shows the equivalent circuit diagram and the corresponding
EVM set-up. Only the measurement relevant headers and terminal blocks are shown, and not necessarily
at their exact location on the EVM.

1. Standard Transceiver Configuration

Normal transceiver operation requires both, the driver and the receiver sections being active.
Therefore, the receiver enable pin (RE) must be at logic low potential and the driver enable pin (DE) at
logic high.
Transmit data entering at the D-input terminal appear as the differential output voltage (V

OD

= V

A

– V

B

)

on the bus wires, A and B. Via the active receiver, it is possible to sense the data traffic in transmit
direction.

4

Sympol™ Transceiver

SLLU128A – June 2010 – Revised August 2010

Copyright © 2010, Texas Instruments Incorporated

Summary of Contents for Sympol SN65HVD96

Page 1: ...g DUT_GND with EART_GND 3 4 Example for Stimulus and Probe Points with JMP4 and JMP14 4 5 Transceiver Configuration for Normal Operation 5 6 EVM Set up for Normal Transceiver Operation 5 7 Configuration for Maximum Loading 6 8 EVM Set up for Maximum Loading 6 9 Wire fault Simulation Using two EVMs 7 10 EVM Configurations Left as Receiver EVM Right as Transmitter EVM 7 11 Sympol Signaling at 500 kb...

Page 2: ...The pin out is identical to the industry standard SN75176 transceiver thus allowing for a direct upgrade from RS 485 to Sympol Note that Sympol signaling does not support the operation of Sympol transceivers together with RS 485 or CAN transceivers in a mixed transceiver type of network Only Sympol transceivers are able to communicate between another However it is possible to replace an entire RS ...

Page 3: ... EARTH to GND through a wire bridge between pin 1 and pin 2 of TB1 Figure 3 Bridging DUT_GND with EART_GND While JMP2 to JMP4 are stimulation points or headers through which the control and data signals for the SN65HVD96 are applied JMP1 and JMP11 to JMP14 are probe points or headers at which these signal can be measured Note that the 50 Ω resistors R2 R3 and R4 have the index n a indicating that ...

Page 4: ...respective probe points you want to measure 3 Adjust the power supply to 5 V 4 Adjust the generator outputs for a 5 V maximum output signal level or check the logic switching levels of the controller I O 5 Connect the power supply conductor with pin 3 of TB1 and observe the blue LED D1 turning on 6 Connect signal conductors from the controller or the generator with their corresponding EVM inputs a...

Page 5: ... pin 3 at JMP2 and the high potential for DE through a wire bridge from pin 2 to pin 1 at JMP3 Data from the signal generator enter the board at pin 2 and pin 3 of JMP4 This data is measured via channel 1 which is connected to pin 1 and pin 2 of JMP14 Channel 2 measures the receive data at JMP11 and channels 3 and 4 the bus voltages VA and VB at JMP6 2 Operation Under Maximum Load EIA 485 RS 485 s...

Page 6: ...lace R8 and R9 0 Ω default with 375 Ω connect pin 2 of JMP7 with pin 1 and pin 3 with pin 4 replace the previous wire bridge at TB1 with a second power supply unit PSU2 and connect the ground terminals of both PSU1 and PSU2 with a wire bridge as shown in Figure 8 Figure 8 EVM Set up for Maximum Loading Note that Figure 8 only shows the wiring of PSU2 for positive common mode voltages For negative ...

Page 7: ...he receiver Here the driver and receiver enable inputs receive low potential through the wire bridges to GND at JMP3 and JMP2 Figure 10 EVM Configurations Left as Receiver EVM Right as Transmitter EVM The input data signal entering EVM2 at JMP4 is measured on scope channel 1 probing the signal at the D input pin of JMP14 The cross wiring of the bus wires occurs at the EVM interlink between the two...

Page 8: ...the EVM and Taking Measurements www ti com Figure 11 Sympol Signaling at 500 kbps Over 1 Meter Cable Figure 12 Sympol Signaling is Unaffected by Common Mode Voltage Figure 13 Sympol Signaling is Unaffected by Cross wire Fault 8 Sympol Transceiver SLLU128A June 2010 Revised August 2010 Copyright 2010 Texas Instruments Incorporated ...

Page 9: ...4 Top View of SN65 HVD96 EVM Figure 15 Bottom View of SN65 HVD96 EVM For detailed information on the device parameters see the SN65HVD96 data sheet Lit SLLSE35 9 SLLU128A June 2010 Revised August 2010 Sympol Transceiver Copyright 2010 Texas Instruments Incorporated ...

Page 10: ...oduct This notice contains important safety information about temperatures and voltages For additional information on TI s environmental and or safety programs please contact the TI application engineer or visit www ti com esh No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine process or combination in which such TI products ...

Page 11: ...ch statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have executed an agreement specifically governing such use Buyers represent that they have all necessary expertise in the safety and regulatory ramifications o...

Page 12: ...Mouser Electronics Authorized Distributor Click to View Pricing Inventory Delivery Lifecycle Information Texas Instruments SN65HVD96EVM ...

Reviews: