background image

User’s Guide

LM5123EVM-BST Evaluation Module

ABSTRACT

The LM5123EVM-BST evaluation module showcases the features and performance of the LM5123-Q1 wide 
input voltage synchronous boost controller. The standard configuration is designed to provide a regulated output 
of 24-V at 200-W, from an input voltage of 8-V to 18-V and switching at 440 kHz. The output voltage can be 
dynamically up to 33-V using the TRK pin of the LM5123-Q1.

This EVM is designed for ease of configuration, enabling an user to evaluate many different applications on 
the same module. Functionality includes: low I

Q

 operation, internal feedback resistors, bypass mode operation 

when V

IN

 is greater than V

OUT

, dynamic output voltage tracking, power good (PGOOD) indicator, programmable 

frequency dithering, programmable undervoltage lock out (UVLO), and overvoltage protection.

Table of Contents

1 Introduction

.............................................................................................................................................................................

3

1.1 Applications........................................................................................................................................................................

3

1.2 Features.............................................................................................................................................................................

3

2 EVM Setup

...............................................................................................................................................................................

4

2.1 EVM Characteristics...........................................................................................................................................................

5

2.2 EVM Connectors and Test Points......................................................................................................................................

5

2.3 EVM Configurations...........................................................................................................................................................

7

3 Test Setup and Procedures

....................................................................................................................................................

8

3.1 Equipment..........................................................................................................................................................................

8

4 Test Results

.............................................................................................................................................................................

9

4.1 Efficiency ...........................................................................................................................................................................

9

4.2 Load Regulation ..............................................................................................................................................................

10

4.3 Thermal Performance......................................................................................................................................................

10

4.4 Start-up Waveforms..........................................................................................................................................................

11

4.5 Steady State Operation....................................................................................................................................................

11

4.6 Load Transient Response................................................................................................................................................

12

4.7 Output Voltage Tracking...................................................................................................................................................

13

5 PCB Layers

............................................................................................................................................................................

14

6 Schematic

..............................................................................................................................................................................

16

7 Bill of Materials

.....................................................................................................................................................................

17

8 Revision History

...................................................................................................................................................................

21

List of Figures

Figure 1-1. Typical Application Circuit.........................................................................................................................................

3

Figure 2-1. EVM Photo................................................................................................................................................................

4

Figure 2-2. Fixed Output Voltage Configuration..........................................................................................................................

7

Figure 2-3. Variable Output Voltage Configuration .....................................................................................................................

7

Figure 3-1. EVM Test Setup.........................................................................................................................................................

8

Figure 4-1. Efficiency: V

OUT

 = 24-V.............................................................................................................................................

9

Figure 4-2. Efficiency: V

OUT

 = 24-V Light Load............................................................................................................................

9

Figure 4-3. 24-V Load Regulation..............................................................................................................................................

10

Figure 4-4. Thermal Performance: V

IN

 = 8-V, V

OUT

 = 24-V P

OUT

 = 200-W, No Forced Airflow.................................................

10

Figure 4-5. V

IN

 = 8-V, V

OUT

 = 24-V, P

OUT

 = 200-W....................................................................................................................

11

Figure 4-6. V

IN

 = 10-V, V

OUT

 = 24-V, P

OUT

 = 200-W..................................................................................................................

11

Figure 4-7. V

IN

 = 14-V, V

OUT

 = 24-V, P

OUT

 = 200-W..................................................................................................................

11

Figure 4-8. V

IN

 = 18-V, V

OUT

 = 24-V, P

OUT

 = 200-W..................................................................................................................

11

Figure 4-9. V

IN

 = 8-V, V

OUT

 = 24-V, P

OUT

 = 200-W....................................................................................................................

11

Figure 4-10. V

IN

 = 10-V, V

OUT

 = 24-V, P

OUT

 = 200-W................................................................................................................

11

www.ti.com

Table of Contents

SNVU737A – DECEMBER 2020 – REVISED DECEMBER 2021

Submit Document Feedback

LM5123EVM-BST Evaluation Module

1

Copyright © 2021 Texas Instruments Incorporated

Summary of Contents for LM5123EVM-BST

Page 1: ...Configurations 7 3 Test Setup and Procedures 8 3 1 Equipment 8 4 Test Results 9 4 1 Efficiency 9 4 2 Load Regulation 10 4 3 Thermal Performance 10 4 4 Start up Waveforms 11 4 5 Steady State Operation 11 4 6 Load Transient Response 12 4 7 Output Voltage Tracking 13 5 PCB Layers 14 6 Schematic 16 7 Bill of Materials 17 8 Revision History 21 List of Figures Figure 1 1 Typical Application Circuit 3 Fi...

Page 2: ... Screen 14 Figure 5 2 Layout Top Layer 14 Figure 5 3 Layout Signal Layer 1 14 Figure 5 4 Layout Signal Layer 2 14 Figure 5 5 Layout Bottom Layer 15 Figure 5 6 Layout Bottom Silk Screen 15 Figure 6 1 Schematic 16 List of Tables Table 2 1 EVM Characteristics 5 Table 2 2 Power Connections 5 Table 2 3 Programmable Jumper Connections 5 Table 2 4 Probe Points 6 Table 7 1 Bill of Materials 17 Trademarks ...

Page 3: ...s supply Automotive HVAC controller supply Automotive motor power supply 1 2 Features The LM5123EVM BST has the following features Input voltage range from 8 V to 18 V Internal low leakage current high impedance feedback resistors with programmable output voltage Operating frequency of 440 kHz with externally clock synchronization up or down by 20 Output voltage tracking using the TRK pin of the L...

Page 4: ...ure 2 1 EVM Photo CAUTION Prolonged operation with low input at full power will cause heating of Q3 and Q2 Board surface is hot Do not touch Contact may cause burns EVM Setup www ti com 4 LM5123EVM BST Evaluation Module SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback Copyright 2021 Texas Instruments Incorporated ...

Page 5: ... evaluation module Table 2 3 lists the EVM jumpers and test points that configure the LM5123 Q1 as desired These jumpers can set different modes of operation or provide signals to different pins of the LM5123 Q1 Table 2 3 Programmable Jumper Connections Jumper Pins Description Default Connection J7 Pin 1 to Pin 2 SYNC DITHER VH CP is pulled to VCC through a 1 kΩ resistor to enable the internal cha...

Page 6: ...on to be skip TP6 Positive input to the VAUX net TP7 Negative input to the VAUX net TP8 Positive input to the TRK pin of the LM5123 Q1 TP9 Negative input to the TRK pin of the LM5123 Q1 Table 2 4 indicates the dedicated voltage probe points of the EVM These points are used to make measurements on the EVM Table 2 4 Probe Points Sense Point Name Description TP1 VIN Sense point for the positive input...

Page 7: ...ration To dynamically change the output voltage RVREFT and RVEFB are removed and the TRK pin voltage is driven directly to change the output voltage See the data sheet for selecting the voltage range of the LM5123 Q1 and setting the TRK pin voltage to produce the desired output voltage Figure 2 3 shows the configuration to change the output voltage dynamically RSET is R25 in the schematic TRK AGND...

Page 8: ...t Electronic Load Load connected to the output of the evaluation module The electronic load should be able to dissipate 200 W at 24 V Multimeters For DC measurements Voltmeter 1 VIN Capable of measuring the input voltage range up to 18 V Voltmeter 2 VOUT Capable of measuring output voltage of 24 V Ammeter 1 IIN Capable of 30 A DC measurement A shunt resistor may also be used to measure the input c...

Page 9: ...EFF 12V_EFF 10V_EFF 8V_EFF Figure 4 1 Efficiency VOUT 24 V Figure 4 2 shows the efficiency comparison between Skip switching mode and FPWM switching mode at light loading conditions IOUT A Efficiency 0 001 0 021 0 041 0 061 0 081 0 1 0 20 40 60 80 100 SKIP MODE FPWM MODE Figure 4 2 Efficiency VOUT 24 V Light Load www ti com Test Results SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document ...

Page 10: ...3 24 4 VIN 18V VIN 14V VIN 12V VIN 10V VIN 8V Figure 4 3 24 V Load Regulation 4 3 Thermal Performance Figure 4 4 Thermal Performance VIN 8 V VOUT 24 V POUT 200 W No Forced Airflow Test Results www ti com 10 LM5123EVM BST Evaluation Module SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback Copyright 2021 Texas Instruments Incorporated ...

Page 11: ...igure 4 8 VIN 18 V VOUT 24 V POUT 200 W 4 5 Steady State Operation Full load operation Figure 4 9 through Figure 4 12 show the steady state waveforms of the LM5123EVM BST Figure 4 9 VIN 8 V VOUT 24 V POUT 200 W Figure 4 10 VIN 10 V VOUT 24 V POUT 200 W www ti com Test Results SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback LM5123EVM BST Evaluation Module 11 Copyright 2021 Tex...

Page 12: ...ient response of the evaluation module Figure 4 13 VIN 8 V IOUT 4 A to 8 A Figure 4 14 VIN 10 V IOUT 4 A to 8 A Figure 4 15 VIN 14 V IOUT 4 A to 8 A Figure 4 16 VIN 18 V IOUT 4 A to 8 A Test Results www ti com 12 LM5123EVM BST Evaluation Module SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback Copyright 2021 Texas Instruments Incorporated ...

Page 13: ...eplicate these waveforms see Section 2 3 1 Figure 4 17 Triangle Voltage Tracking VIN 14 V POUT 200 W VOUT 14 V to 33 V Figure 4 18 Sine Voltage Tracking VIN 14 V POUT 200 W VOUT 14 V to 33 V www ti com Test Results SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback LM5123EVM BST Evaluation Module 13 Copyright 2021 Texas Instruments Incorporated ...

Page 14: ...yout Top Silk Screen Figure 5 2 Layout Top Layer Figure 5 3 Layout Signal Layer 1 Figure 5 4 Layout Signal Layer 2 PCB Layers www ti com 14 LM5123EVM BST Evaluation Module SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback Copyright 2021 Texas Instruments Incorporated ...

Page 15: ...ottom Layer Figure 5 6 Layout Bottom Silk Screen www ti com PCB Layers SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback LM5123EVM BST Evaluation Module 15 Copyright 2021 Texas Instruments Incorporated ...

Page 16: ... illustrates the EVM schematic Figure 6 1 Schematic Schematic www ti com 16 LM5123EVM BST Evaluation Module SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback Copyright 2021 Texas Instruments Incorporated ...

Page 17: ...2ER71H106KA12L MuRata C19 C20 C21 C22 C23 C35 C36 7 0 1uF CAP CERM 0 1 uF 100 V 10 X7R AEC Q200 Grade 1 0603 603 GCJ188R72A104KA01D MuRata C20 C21 C22 3 4 7uF CAP CERM 4 7 uF 100 V 10 X7S AEC Q200 Grade 1 1210 1210 CGA6M3X7S2A475K200AB TDK C24 C25 C26 C33 4 4 7uF CAP CERM 4 7 uF 100 V 10 X7S AEC Q200 Grade 1 1210 1210 CGA6M3X7S2A475K200AB TDK C27 1 100pF CAP CERM 100 pF 50 V 5 C0G NP0 AEC Q200 Gra...

Page 18: ...Wurth Elektronik J8 1 Header 100mil 7x1 Gold TH 7x1 Header TSW 107 07 G S Samtec J9 J10 J11 3 Header 2 54 mm 2x1 Gold TH Header 2 54mm 2x1 TH 61300211121 Wurth Elektronik L1 1 2 6uH Inductor Shielded Drum Core WE Superflux200 2 6 uH 31 5 A 0 0016 ohm SMD 18 3x8 9x18 2mm 7443556260 Wurth Elektronik Q1 Q2 Q3 Q4 4 60V MOSFET N CH 60 V 71 A SO 8FL SO 8FL NTMFS5C670NLT1G ON Semiconductor R2 R3 2 0 003 ...

Page 19: ...st Point Miniature SMT Testpoint_Keystone_Miniature 5015 Keystone TP4 TP5 TP7 TP9 4 Test Point Miniature Black TH Black Miniature Testpoint 5001 Keystone U1 1 2 2 MHz Wide VIN Low IQ Synchronous Boost Controller with Tracking VQFN20 LM5123QRGRRQ1 Texas Instruments C1 0 2200pF CAP CERM 2200 pF 100 V 10 X7R 0603 603 GRM188R72A222KA01D MuRata C28 C29 0 0 1uF CAP CERM 0 1 uF 100 V 10 X7R AEC Q200 Grad...

Page 20: ... 80 6k RES 80 6 k 1 0 1 W AEC Q200 Grade 0 0603 603 CRCW060380K6FKEA Vishay Dale R25 0 24 9k RES 24 9 k 0 1 0 1 W 0603 603 RT0603BRD0724K9L Yageo America Schematic www ti com 20 LM5123EVM BST Evaluation Module SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback Copyright 2021 Texas Instruments Incorporated ...

Page 21: ...ision December 2020 to Revision A December 2021 Page Updated text to match the proper rating of the EVM 3 Updated images throughout the user s guide 3 www ti com Revision History SNVU737A DECEMBER 2020 REVISED DECEMBER 2021 Submit Document Feedback LM5123EVM BST Evaluation Module 21 Copyright 2021 Texas Instruments Incorporated ...

Page 22: ...other than TI b the nonconformity resulted from User s design specifications or instructions for such EVMs or improper system design or c User has not paid on time Testing and other quality control techniques are used to the extent TI deems necessary TI does not test all parameters of each EVM User s claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects...

Page 23: ... These limits are designed to provide reasonable protection against harmful interference in a residential installation This equipment generates uses and can radiate radio frequency energy and if not installed and used in accordance with the instructions may cause harmful interference to radio communications However there is no guarantee that interference will not occur in a particular installation...

Page 24: ...y for convenience and should be verified by User 1 Use EVMs in a shielded room or any other test facility as defined in the notification 173 issued by Ministry of Internal Affairs and Communications on March 28 2006 based on Sub section 1 1 of Article 6 of the Ministry s Rule for Enforcement of Radio Law of Japan 2 Use EVMs only after User obtains the license of Test Radio Station as provided in R...

Page 25: ... any interfaces electronic and or mechanical between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees affiliates contractors or designees 4 4 User assumes all...

Page 26: ...OR DAMAGES ARE CLAIMED THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT 9 Return Policy Except as otherwise provided TI does not offer any refunds returns or exchanges Furthermore no return of EVM s will be accepted if the package has been opened and no return of the EVM s will be accepted if they are damaged or otherwise not in a resalable condition If User feels it has...

Page 27: ...o change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reproduction and display of these resources is prohibited No license is granted to any other TI intellectual property right or to any third party intellectual property right TI disclaims responsibility for and you will fully indemn...

Reviews: