background image

R7 x C10 =

0.03V

(4.5V 

±

 0.49V) x 1209 ns

= 16.2 x 10

-5

R7 x C10 =

'

V

(V

IN

 - V

A

) x t

ON

R3 =

40 

P

A

8.2A x 0.057

:

= 11.7 k

:

Output Ripple Control

www.ti.com

and the load current at current limit calculates to 5.35A at 4.5V, and 5.24A at 24V.

To change the current limit threshold the value for R5 should be chosen to achieve 50 mV to 100 mV
across it at current limit, staying within the practical limitations of power dissipation and physical size of the
resistor. A larger value for R5 reduces the effects of the current limit comparator offset, but at the expense
of higher power dissipation. After selecting the value for R5, calculate the value for R3 by rearranging
Equation 1 above. See the Applications Information section of the LM25085A data sheet for a procedure
to account for ripple current amplitude and tolerances when selecting the resistor for the ADJ pin.

B) Q1 R

DS(ON)

method – To configure the evaluation board to use the R

DS(ON)

of Q1 for current limit

detection, move the jumpers at both JP1 and JP2 from the A-B position to the B-C position. This change
connects the ADJ pin resistor (R3) and the ISEN pin across Q1. Since the sense resistance is now the
R

DS(ON)

of Q1, R3 must be changed. The data sheet for the Si7465 PFET lists the typical R

DS(ON)

as 51 m

at V

GS

= 10V, and 64 m

at V

GS

= 4.5V. Therefore, the R

DS(ON)

is estimated to be nominally 57 m

at V

GS

=

7.7V. To achieve the same nominal current limit threshold as above (8.2A), using Equation 6 in the data
sheet R3 calculates to:

(6)

The load current is equal to the current limit threshold minus half the current ripple amplitude. R3 can be
changed to set other current limit detection thresholds.

6

Output Ripple Control

The LM25085A requires a minimum of 25 mVp-p ripple at the FB pin, in phase with the switching
waveform at the SW node, for proper operation. On this evaluation board, the required ripple is generated
by R7, C9, and C10, allowing the ripple at V

OUT

to be kept to a minimum, as described in option A below.

Alternatively, the required ripple at the FB pin can be supplied from ripple generated at V

OUT

and passed

through the feedback resistors, as described in options B and C below, using one or two less external
components.

A) Minimum Output Ripple: This evaluation board is supplied configured for minimum ripple at V

OUT

by

using components R7, C9 and C10. The ripple voltage required by the FB pin is generated by R7 and C10
since the SW node switches from

-1V to V

IN

, and the right end of C10 is a virtual ground. The values for

R7 and C10 are chosen to generate a 25-40 mVp-p triangle waveform at their junction. That triangle wave
is then coupled to the FB pin through C9. The following procedure is used to calculate values for R7, C9
and C10:

1) Calculate the voltage V

A

:

V

A

= V

OUT

- (V

SW

x (1 - (V

OUT

/V

IN(min)

)))

(7)

where V

SW

is the absolute value of the voltage at the SW node during the off-time, typically 0.5V to 1V

depending on the diode, and V

IN

is the minimum input voltage. Using a typical value of 0.65V for V

SW

, V

A

calculates to 0.49V. This is the approximate DC voltage at the R7/C10 junction, and is used in the next
equation.

2) Calculate the R7xC10 product:

(8)

where t

ON

is the maximum on-time (

1209 ns), V

IN

is the minimum input voltage, and

Δ

V is the desired

ripple amplitude at the R7/C10 junction, 30 mVp-p for this example.

(9)

R7 and C10 are then chosen from standard value components to satisfy the above product. On this
evaluation board, C10 is set at 3300 pF. R7 calculate to be 49 k

, and a standard value 48.7 k

resistor

is used. C9 is chosen to be 0.01 µF, large compared to C10. The circuit as supplied on this EVB is shown
in

Figure 3

.

The output ripple, which ranges from

20 mVp-p at V

IN

= 4.5V to

33 mVp-p at V

IN

= 24V, is determined

primarily by the ESR of the output capacitance (C6), and the inductor’s ripple current. See

Figure 10

.

4

AN-1933 LM25085A Evaluation Board

SNVA384B – February 2009 – Revised April 2013

Submit Documentation Feedback

Copyright © 2009–2013, Texas Instruments Incorporated

Summary of Contents for LM25085A

Page 1: ...ent limit set at 8 2A The board is populated with all components except C5 and C7 The board s specification are Input Voltage 4 5V to 24V Output Voltage 1V Maximum load current 5A Minimum load current 0A Current Limit Threshold 8 2A Measured Efficiency 77 5 VIN 4 5V IOUT 1Amp typical efficiency for converter providing a 1V output Nominal Switching Frequency 200 kHz Size 3 1 in x 1 5 in Figure 1 Ev...

Page 2: ...w the inductor current to decrease at least as much if not more than the current increase which occurred during the on time The circuit may be shutdown at any time by grounding the Enable test point EN TP1 Removing the ground connection allows normal operation to resume Refer to the LM25085A 42V Constant On Time PFET Buck Switching Controller with 0 9V Reference SNVS601 data sheet for a detailed b...

Page 3: ...g forced off time provides effective protection from output load faults over a wide range of operating conditions Figure 2 Current Limit Off time vs VIN and VFB A Sense resistor method This evaluation board is supplied configured for the sense resistor method of current limit detection Jumpers A B are in place at both jumper locations JP1 JP2 which connects the ADJ pin resistor R3 and the ISEN pin...

Page 4: ...nd C10 allowing the ripple at VOUT to be kept to a minimum as described in option A below Alternatively the required ripple at the FB pin can be supplied from ripple generated at VOUT and passed through the feedback resistors as described in options B and C below using one or two less external components A Minimum Output Ripple This evaluation board is supplied configured for minimum ripple at VOU...

Page 5: ... current flows through R6 and that ripple voltage is passed to the FB pin via C5 The ripple at VOUT can be set as low as 25 mVp p since it is not attenuated by R1 and R2 The minimum value for R6 is calculated from 10 where IOR min is the minimum inductor s ripple current which occurs at minimum input voltage and is 622 mAp p at 4 5V The minimum value for R6 calculates to 0 04 ohms Using a standard...

Page 6: ...t VOUT ranges from 32 mVp p to 43 mVp p over the input voltage range See Figure 10 If the application can accept this ripple level this is the most economical solution The circuit is shown in Figure 5 Figure 5 Lowest Cost Configuration 7 Monitor The Inductor Current The inductor s current can be monitored or viewed on a scope with a current probe Remove the jumper from the WIRE LOOP pads and insta...

Page 7: ...ic Capacitor TKD C2012X7R2A332K 0805 3300 pF 100V D1 Schottky Diode On Semi D2PAK 35V 25A MBRB2535CTL L1 Power Inductor Wurth XXL 7447709006 12 mm x 12 mm 6 8 µH Q1 P Channel MOSFET Vishay Si7465DP SO 8 Power 60V 5A R1 Resistor Vishay 0805 1 1k CRCW08051101F R2 Resistor Vishay 0805 10k CRCW08051002F R3 Resistor Vishay 0805 2 05k CRCW08052051F R4 Resistor Vishay 0805 21k CRCW08052102F R5 Resistor V...

Page 8: ...verter producing a 1 0V output Figure 7 Efficiency vs Load Current Figure 8 Efficiency vs Input Voltage Figure 9 Switching Frequency vs Input Voltage 8 AN 1933 LM25085A Evaluation Board SNVA384B February 2009 Revised April 2013 Submit Documentation Feedback Copyright 2009 2013 Texas Instruments Incorporated ...

Page 9: ...e 10 Output Voltage Ripple Figure 11 Line Regulation Figure 12 Load Regulation 9 SNVA384B February 2009 Revised April 2013 AN 1933 LM25085A Evaluation Board Submit Documentation Feedback Copyright 2009 2013 Texas Instruments Incorporated ...

Page 10: ...de Trace 4 Inductor Current Trace 3 VOUT Trace 1 SW Node VIN 12V IOUT 0 Figure 14 Discontinuous Conduction Mode Trace 4 Inductor Current Trace 3 VOUT Trace 1 SW Node VIN 12V IOUT 0 Figure 15 Discontinuous Conduction Mode Expanded Scale 10 AN 1933 LM25085A Evaluation Board SNVA384B February 2009 Revised April 2013 Submit Documentation Feedback Copyright 2009 2013 Texas Instruments Incorporated ...

Page 11: ...e 16 Board Silkscreen Figure 17 Board Top Layer Figure 18 Board Bottom Layer Viewed from Top 11 SNVA384B February 2009 Revised April 2013 AN 1933 LM25085A Evaluation Board Submit Documentation Feedback Copyright 2009 2013 Texas Instruments Incorporated ...

Page 12: ...esponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failur...

Reviews: