background image

'

V

OUT

 = 

'

I

P-P

 x

1

8 x f

SW

 x C

OUT

R

ESR

 +

'

I

P-P

 =

(V

IN

 - V

OUT

) x D

L x f

SW

I

CIN(RMS)

 = 3A

 

0.5 x 0.5 = 1.5A

D =

V

OUT

V

IN

I

CIN(RMS)

 = I

OUT

 

D(1 - D)

Component Selection

www.ti.com

5

Component Selection

This section provides a walk-through of the design process of the LM20133 evaluation board. Unless
otherwise indicated all equations assume units of Amps (A) for current, Farads (F) for capacitance,
Henries (H) for inductance, and Volts (V) for voltages.

5.1

Input Capacitor

The required RMS current rating of the input capacitor for a buck regulator can be estimated by

Equation 1

:

(1)

The variable D refers to the duty cycle, and can be approximated by:

(2)

From

Equation 3

it follows that the maximum I

CIN(RMS)

requirement will occur at a full 3A load current with

the system operating at 50% duty cycle. Under this condition, the maximum I

CIN(RMS)

is given by:

(3)

Ceramic capacitors feature a very large I

RMS

rating in a small footprint, making a ceramic capacitor ideal

for this application. A 47 µF X5R ceramic capacitor from Murata provides the necessary input capacitance
for the evaluation board. For improved bypassing, a small 1 µF high frequency capacitor is placed in
parallel with the 47 µF bulk capacitor to filter high frequency noise pulses on the supply.

5.2

AV

IN

Filter

An RC filter should be added to prevent any switching noise on PV

IN

from interfering with the internal

analog circuitry connected to AV

IN

. These can be seen on the schematic as components R

F

and C

F

. There

is a practical limit to the size of the resistor R

F

as the AV

IN

pin will draw a short 60mA burst of current

during startup, and if R

F

is too large the resulting voltage drop can trigger the UVLO comparator. For the

demo board a 1

resistor is used for R

F

ensuring that UVLO will not be triggered after the part is enabled.

A recommended 1 µF C

F

capacitor coupled with the 1

resistor provides roughly 16dB of attenuation at

the 1 MHz switching frequency.

5.3

Inductor

As per the device-specific data sheet recommendations, the inductor value should initially be chosen to
give a peak-to-peak ripple current equal to roughly 30% of the maximum output current. The peak-to-peak
inductor ripple current can be calculated by

Equation 4

:

(4)

Rearranging this equation and solving for the inductance reveals that for this application (V

IN

= 5 V, V

OUT

=

1.2 V, f

SYNC

= 500 kHz, and I

OUT

= 3A) the nominal inductance value is roughly 2.03 µH. Rounding up to

the nearest standard inductor value, a final inductance of 2.5 µH is selected. This results in a peak-to-
peak ripple current of 730 mA and 898 mA when the converter is operating from 5 V and 3.3 V,
respectively. Once an inductance value is calculated, an actual inductor needs to be selected based on a
tradeoff between physical size, efficiency, and current carrying capability. For the LM20133 evaluation
board, a Coilcraft MSS1038-252NL inductor offers a good balance between efficiency (10 m

DCR), size,

and saturation current rating (5.7A I

SAT

rating).

5.4

Output Capacitor

The value of the output capacitor in a buck regulator influences the voltage ripple that will be present on
the output voltage, as well as the large signal output voltage response to a load transient. Given the peak-
to-peak inductor current ripple (

Δ

I

P-P

) the output voltage ripple can be approximated by

Equation 5

:

(5)

4

AN-1688 LM20133 Evaluation Board

SNVA274B – October 2007 – Revised May 2013

Submit Documentation Feedback

Copyright © 2007–2013, Texas Instruments Incorporated

Summary of Contents for LM20133

Page 1: ...uirements The LM20133 is available in a 16 pin HTSSOP package with an exposed pad for enhanced thermal performance The LM20133 evaluation board has been designed to balance overall solution size with the efficiency of the regulator The evaluation board measures just under 1 3 x 1 1 on a two layer PCB with all components placed on the top layer The power stage and compensation components of the LM2...

Page 2: ...inal connects to the output voltage of the power supply and should be connected to the load EN This terminal connects to the enable pin of the device This terminal should be connected to VIN or driven externally If driven externally a voltage typically greater than 1 18 V will enable the device The operating voltage for this pin should not exceed 5 5 V The absolute maximum voltage rating on this p...

Page 3: ...ncy vs Load Line Regulation ILOAD 3A 0 5A to 3A Load Transient Response Load Regulation VIN 5 V 200 µs DIV Startup Waveform 3 SNVA274B October 2007 Revised May 2013 AN 1688 LM20133 Evaluation Board Submit Documentation Feedback Copyright 2007 2013 Texas Instruments Incorporated ...

Page 4: ...tage drop can trigger the UVLO comparator For the demo board a 1 Ω resistor is used for RF ensuring that UVLO will not be triggered after the part is enabled A recommended 1 µF CF capacitor coupled with the 1 Ω resistor provides roughly 16dB of attenuation at the 1 MHz switching frequency 5 3 Inductor As per the device specific data sheet recommendations the inductor value should initially be chos...

Page 5: ...5 6 CVCC The CVCC capacitor is necessary to bypass an internal 2 7 V subregulator This capacitor should be sized equal to or greater than 1 µF but less than 10 µF A value of 1 µF is sufficient for most applications 5 7 CC1 The capacitor CC1 is used to set the crossover frequency of the LM20133 control loop Since this board was optimized to work well over the full input output voltage and frequency...

Page 6: ...LM20133 evaluation board is set to 1 2 V giving resistor values of RFB1 4 99 kΩ and RFB2 10 kΩ If a different output voltage is required the value of RFB1 can be adjusted according to Equation 9 9 RFB2 does not need to be changed from its value of 10 kΩ 6 PCB Layout Figure 2 Top Layer 6 AN 1688 LM20133 Evaluation Board SNVA274B October 2007 Revised May 2013 Submit Documentation Feedback Copyright ...

Page 7: ...www ti com PCB Layout Figure 3 Bottom Layer 7 SNVA274B October 2007 Revised May 2013 AN 1688 LM20133 Evaluation Board Submit Documentation Feedback Copyright 2007 2013 Texas Instruments Incorporated ...

Page 8: ...esponsible for compliance with all legal regulatory and safety related requirements concerning its products and any use of TI components in its applications notwithstanding any applications related information or support that may be provided by TI Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failur...

Reviews:

Related manuals for LM20133