background image

CATHODE-RAY  TUBE  CIRCUIT

The  NE2  neon  glow  lamps  across  the  INTEN­

SITY  control  potentiometer  and  MAX.  INTENSITY 
variable  resistor  maintain  the  INTENSITY  poten­
tiometer  terminal  voltage  constant  regardless  of 
cathode-ray 

tube 

cathode 

current,  thereby 

stabilizing  the  intensity adjustment.

The  purpose  of  the  MAX.  INTENSITY  control 

is  to  adjust  the  minimum  grid  bias  setting  avail­

able  by  the  INTENSITY  control  to  a  safe  value 
thus  preventing  damage  to  the  cathode-ray  tube 
screen  in  case  the  INTENSITY  control  is  ad-

HIGH-VOLTAGE

All  accelerating  potentials  for  the  cathode- 

ray  tube  are  provided  by  a  high-voltage  supply 
employing  an  audio  oscillator  operating  at  a 

frequency  of  approximately  1500  cycles.  Four 

high-voltage  rectifier  tubes  in  a  voltage-quad-

van ced  too  far.

The  FOCUS  control  potentiometer  varies  the 

voltage  at  the  focusing  ring  to  focus  the  trace; 
the  ASTIGMATISM  control  potentiometer  varies 
the  voltage  at  the  astigmatism  anode  to  focus 
the  spot  in  both  dimensions  simultaneously.

The  GEOM.  ADJ.  potentiometer  varies  the 

field  as  the  beam  emerges  from  the  deflection 
system  to  control  the  linearity  at  the  extremes 
of  deflection.

POWER  SUPPLY

k

rupling  circuit  provide  +20,000  volts;  a  single 
half-wave  rectifier  tube  provides  —4000  volts. 
The  high-voltage  rectifiers,  capacitors,  resistors 

and  transformers  are  all  oil-immersed.

HIGH-VOLTAGE  OSCILLATOR  A N D   REGULATOR  CIRCUIT

The  screen  voltage  of  the  high-voltage  oscil­

lator  V820  is  regulated  to  maintain  a  con­

stant  —4000  volts  of  rectified  output  so  that 
the  deflection  sensitivity  of  the  cathode-ray 
tube  will  not  be  affected  by  line-voltage 

or  load  changes.  A  sample  of  the  —4000-volt 
output,  obtained  from  a  tap  on  the  divider  con­

sisting  of  R212  and  R213,  is  compared  to  the 
regulated  —250-volt  supply  through  V814A.  Any 
“ error”  voltage  that  may  exist  is  amplified  by 
V814A  and  V814B  and  is  applied  to  the  screen 
of  the  oscillator  tube  V820.  This  will  change  the 
output  of  the  oscillator  in  a  direction  to  compen­

sate  for  the  error.  The  —4KV  ADJ.  R814  controls 
the  bias  on  V814A  and  is  adjusted  so  that  the 
output  voltage  is  exactly  —4000  volts.  This  same 
circuit  indirectly  regulates  the  +20,000-volt  sup­

ply  since  the  oscillator  furnishes  energy  for  both 
supplies.

The  time-constant  network  associated  with  the 

V804  circuit  delays  the  application  of  screen 
voltage  to  the  oscillator  tube  slightly  when  the 

power  is  first  turned  on.  This  permits  the  oscil­
lator  circuit  for  the  heaters  (V830)  to  bring  the 
heaters  up  to  emission  before  the  application  of 
plate voltage  in  the  rectifier tubes.

TIME-MARK  GENERATOR

An  electron-coupled  Colpitts  oscillator  V250B 

is  gated  off  and  on  by  a  free-running  multi­
vibrator  circuit  V225A  and  V225B  through  the 
cathode-follower  V250A.  The  gated  time  markers 
are  then  amplified  in  V264  and  are  coupled  to 

the  cathode-ray  tube  vertical  deflection  circuit 

when  the  SIGNAL  MODE  switch  is  in  the  MARK­

ER  position.

The  time  markers  are  also  coupled  through

C267  to  the  grid  circuit  of  the  cathode-follower 

V243A,  where  they  are  superimposed  on  the 

multivibrator  waveform  and  fed  to  the  trigger 
circuitry  so  that  the  sweep  can  be  triggered  by 
the  markers when  the  TRIGGER SELECTOR  switch 
is  in  the  MARKER  position.  The  diode  V242 
clamps  the  grid  of  V243A  to  prevent  the  nega­
tive  pulses  of  the  differentiated  multivibrator 
waveform  from  producing  a  trigger.

i t

2-4

CIRCUIT  DESCRIPTION  —  TYPE  5 0 7

®

Summary of Contents for 507

Page 1: ...8 R54 I OK 1 2W F IX E D COMP 10 302 103 M O D IFIC A TIO N NO 2092 SWEEP TRIGGER T R IP PULSE JUN ES 1959 MODI FI CATI ON NOT CE FOR TYPE 507 E FFE C TIV E S E R IA L NUMBER 128 CHANGE C267 FROM 1 5 TO 4 7 C260 FROM 01 TO 47 PF M O D IFIC A TIO N NO 2092 T IM E MARK GENERATOR JUNE 5 1959 CORRECTION FOR TYPE 507 R667 SHOULD BE LA B E LE D R674 HEATER WI RING DI AG POWER SUPPLY CHASSI S JUNE 5 1959...

Page 2: ...55 FROM 100K 1 2W F IX E D COMP 10 302 104 TO 300K 1 2W F IX E D COMP 10 302 334 R656 FROM27K 1 2W F IX E D COMP 10 302 273 TO 82K 1 2W FIXED COMP 10 302 823 R657 FROM 270K 1 2 W FIXED COMP 10 302 274 TO 820K I 2 W F IX E D COMP 10 302 824 MODI FI CATI ON NO 2174 POWER SUPPLY JUNE 5 1959 M O D I F I C A T I O N N O T I C E F OR T Y P E 507 E F F E C T I V E S E R I A L NO 1 4 R E M O V E L 3 2 42 ...

Page 3: ...UCTION MANUAL TEKTRONIX INC MANUFACTURERS OF CATHODE RAY AND VIDEO TEST INSTRUMENTS Sunset H igh w a y and Barnes Road P O Box 831 P o rtland 7 O regon U S A Phone CYpress 2 2 6 1 1 Cables T e k tro n ix TYPE 507 SERIAL NUMBER _____ 1M 507 1 ...

Page 4: ...ght 1959 by Tektronix Inc Portland Oregon Printed in the United States of America All rights reserved Contents of this publica tion may not be reproduced in any form without permission of the copy right owner ...

Page 5: ...TYPE 507 OSCILLOSCOPE AND ACCESSORIES ...

Page 6: ... I I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I ...

Page 7: ...Con nectors CIRCUIT DESCRIPTION SECTION 2 Sweep Vertical Deflection System Cathode Ray Tube Circuit High Voltage Power Supply Time Mark Gen erator External Power Supply MAINTENANCE SECTION 3 Preventive Maintenance Analyzing Trouble ADJUSTMENT PROCEDURE SECTION 4 PARTS LIST SECTION 5 SCHEMATIC DIAGRAMS SECTION 6 ACCESSORIES SECTION 7 507 ...

Page 8: ... H I 1 ...

Page 9: ... 90 percent amplitude points is about 5 millimicroseconds 005 microseconds A passive damping network inserted in the deflection leads is adjusted for optimum transient response without overshoot or ringing The maximum vertical sensitivity with a Type T507P cathode ray tube operated at 24 kv ac celerating is 50 v cm Attenuator A step attenuator with a characteristic imped ance of 72 ohms is provide...

Page 10: ...he sweep circuit to about 10 percent to avoid exceeding the dissipation limits of some of the circuit components The limiting system serves purely a protective func tion and does not provide a frequency dividing operation The following table shows the maximum per missible repetition rate for each of the avail able sweep times per centimeter SWEEP TIME MAXIMUM REPETITION RATE 50 jasec cm 600 c s 20...

Page 11: ...507 unless an other phosphor is specified Construction Contained in two separate units of convenient size normally mounted on a Tektronix Type 500A Scope Mobile The anodized chassis and the blue wrinkle finished cabinets are made of an aluminum alloy Photo etched anodized pan els are employed Dimensions Indicator unit 16 3 4 high 13 wide 23 5 b deep Power unit 10y2 high 13 wide 17y2 deep Weight In...

Page 12: ... amplitude and 5 fisec width at TRIP PULSE OUT connector on rear panel of instrument ATTENUATOR VERTICAL Switch selects percentage of input signal voltage applied to vertical deflec tion plates SIGNAL MODE Three position switch reverses deflection plate polarity with respect to signal being observed The center position on the switch connects the output of the Time Mark Genrator to the vertical def...

Page 13: ...LINE connector UHF connector to vertical ATTENUATOR switch UHF connector to TRIGGER SELECTOR switch UHF connector to thyratron in Trip Pulse circuit to make available external ly a pulse of approximately 700 volts amplitude and 5 i sec duration EXTERNAL POWER SUPPLY DC SUPPLIES POWER AC HEATERS ON OFF switch on power supply unit controlling ac line voltage to primary of plate supply transformer pi...

Page 14: ......

Page 15: ...itable for operating the sweep generator and unblanking circuits The SWEEP STABILITY control by varying the bias on the grid of V I05 determines the optimum point of triggering Duty Cycle Limiter The duty cycle limiting circuit is designed as a protective circuit to prevent the horizontal amplifier V324 from exceeding its dissipation rating This is accomplished by sampling the out put of the plus ...

Page 16: ...2 in the grid circuit of the clamp tubes provides a 10 millimicrosec ond delay to enable the unblanking circuit to reach full voltage before the sweep starts Bootstrap Circuit For 0 7 7 to charge linearly rather than ex ponentially the voltage across the timing resistor R176 and hence the charging current must re main constant This action is accomplished by the sweep cathode follower V I73 and the...

Page 17: ...lifier the vertical defection circuit con sists mainly of an attenuator and a positioning network The input signal is developed across the 72 ohm attenuator resistance The desired percentage of the input signal is selected from a tap on the div ider by means of the ATTENUATOR switch from where the signal is coupled to one of the ver tical deflection plates in the cathode ray tube The other vertica...

Page 18: ...d by line voltage or load changes A sample of the 4000 volt output obtained from a tap on the divider con sisting of R212 and R213 is compared to the regulated 250 volt supply through V814A Any error voltage that may exist is amplified by V814A and V814B and is applied to the screen of the oscillator tube V820 This will change the output of the oscillator in a direction to compen sate for the erro...

Page 19: ...627B to the output to prevent the output voltage from changing C644 improves the response of the cir cuit to sudden changes in output voltage This supply also provides a 360 volt unregulated output for the oscillator tube in the high voltage supply A small sample of the unregulated bus ripple appears at the screen of V634 through R637 This produces a ripple component at the grids of the cathode fo...

Page 20: ... t t t L L L L I L ...

Page 21: ...e normally connected in parallel for 117 volt operation but which can easily be connected in series for 234 volt operation Each of these split windings ter minates in a nest of four terminal lugs arranged in a square on a bakelite terminal board on the underside of the chassis and are numbered 1 2 3 and 4 in clockwise rotation Terminals 1 and 3 are connected to one wind ing and terminals 2 and 4 a...

Page 22: ... 250 volt supply to which all other supplies are com pared If all voltages are low V612 may be low in emission or V619 may not be conducting If all voltages are high V619 may be shorted in which case the 250 volt bus should indicate about 350 volts If individual voltages are off check the volt age at the plate of the series regulator tube involved for evidence of low cathode emission Check the res...

Page 23: ...Tube Geometry Adjust The operating voltages required for best linearity at the extremes of deflection may vary somewhat between cathode ray tubes The GEOM ADJ control R861 accommodates this variation Free run the sweep by turning the STABILITY control full clockwise and position the trace to the top line of the graticule Adjust the GEOM ADJ control for best linearity Position trace at bottom of gr...

Page 24: ...er positions and adjust the test oscilloscope for a sweep speed of 05 microseconds division In those oscilloscopes having a HF SYNC mode it may be more con venient to operate in this mode with a synchro nized sweep than to trigger the sweep Adjust L258N for one marker per division With the set up unchanged from the previous step adjust L253 and L264 for maximum ampli tude of the displayed pulses L...

Page 25: ...ming the sweep make sure the tim ing of the time markers is accurate see step 7 and that the instrument is thoroughly warmed up For best results the sweep should be timed in the sequence indicated in the table 9 Vertical Positioning Voltage Connect a voltmeter to the 150 volt test point and adjust the 150 V POS CAL control R418 for exactly 150 volts then connect the voltmeter to the 150 volt test ...

Page 26: ...ixed 600v 283 006 u C859 add 0068 pf PTM Fixed 5000v 285 509 il1 C86O add 0068 pf PTM Fixed 5000v 285 509 INDUCTORS m L154 change to 6 5 13 Ph Var 114 023 RESISTORS R1 change to 150 Q 2w Fixed Comp 10 306 151 R50 remove R54 change to 220 9 l 2w Fixed Comp 10 302 221 R172 remove R190 add 600 S 2 lOw Fixed WW 5 308 148 R191 change to 470 S 2w Fixed Comp 10 306 471 R196 change to 4o 9 lOw Fixed WW 5 ...

Page 27: ...V1I6 V 14 S VI53 V133 VI44 VI 4 r Li ...

Page 28: ......

Page 29: ...TUD CLIP MOLDED NYLON 355 046 SPACER MOLDED NYLON 5 32 HEIGHT 361 007 SPACER MOLDED NYLON 1 4 HEIGHT 361 008 SPACER MOLDED NYLON 3 8 HEIGHT 361 009 CERAMIC STRIP 7 16 BY 3 NOTCHES 124 092 CERAMIC STRIP 7 16 BY 5 NOTCHES 124 093 CERAMIC STRIP 7 16 BY 7 NOTCHES 124 094 CERAMIC STRIP 7 16 BY 9 NOTCHES 124 095 CERAMIC STRIP 7 16 BY 11 NOTCHES 124 1 06 CERAMIC STRIP 3 4 BY 1 NOTCH 124 100 CERAMIC STRIP...

Page 30: ......

Page 31: ... 007 SPACER MOLDED NYLON 1 4 HEIGHT 361 008 SPACER MOLDED NYLON 3 8 HEIGHT 361 009 CERAMIC STRIP 7 16 BY3 NOTCHES 124 092 CERAMIC STRIP 7 16 BY5 NOTCHES 124 093 CERAMIC STRIP 7 16 BY7 NOTCHES 124 094 CERAMIC STRIP 7 16 BY9 NOTCHES 124 095 CERAMIC STRIP 7 16 BY 11 NOTCHES 124 106 CERAMIC STRIP 3 4 BY 1NOTCH 124 100 CERAMIC STRIP 3 4 BY 2 NOTCHES 124 086 CERAMIC STRIP 3 4 BY 3 NOTCHES 124 087 CERAMI...

Page 32: ......

Page 33: ...556 C20 01 Ilf Cer Fixed 500 v 283 002 C22 02 if Cer Fixed 150 v 283 004 C25 001 if Cer Fixed 500 v 283 000 C26 270 i if Cer Fixed 500 v 10 281 543 C29 6 25 if EMT Fixed 300 v 290 000 C30 47 i if Cer Fixed 500 v 9 4 fifif 281 518 C34 005 if Cer Fixed 500 v 283 001 C47 100 i if Cer Fixed 350 v 2 0 i if 281 523 C48 01 Ilf Cer Fixed 500 v 283 002 C50 01 Ilf Cer Fixed 500 v 283 002 C54 5 i f PBT Fixed...

Page 34: ...7F 7 45 x xf Cer Var 500 v 281 012 Cl 77G 7 45 x xf Cer Var 500 v 281 012 C177H 7 45 x xf Cer Var 500 v 281 012 C177J 7 45 x xf Cer Var 500 v 281 012 C177K 7 45 x xf Cer Var 500 v 281 012 C177L 7 45 x xf Cer Var 500 v 281 012 Cl 77M 12 x xf Cer Fixed 500 v 1 2 x xf 281 506 Cl 84 1 xf Manufactured by Tektronix 285 556 Cl 88 1 xf Manufactured by Tektronix 285 556 Cl 90 5 xf PBT Fixed 1 000 V 285 538...

Page 35: ... 5 283 511 C258K 470 t if Mica Fixed 500 v 10 283 522 C260 47 t if Cer Fixed 500 v 10 281 518 C266 1 if Manufactured by Tektronix 285 556 C267 4 7 t if Cer Fixed 500 v 1 i tf 281 501 C268 01 if Cer Fixed 500 v 283 002 C273 01 if Cer Fixed 150 v 283 003 C281A B 2x20 if EMC Fixed 450 v 290 037 C285 2x15 if EMC Fixed 350 v 290 056 C287 2x15 if EMC Fixed 350 v 290 056 C301 7 i tf Cer Fixed 500 v 0 25 ...

Page 36: ... v 290 000 C820 01 if PTM Fixed 400 v 285 510 C821 01 if PTM Fixed 400 v 285 510 C822 047 if PTM Fixed 600 v 285 520 C830 6 25 if EMT Fixed 300 v 290 000 C831 2x15 if EMC Fixed 350 v 290 056 C833 01 if PTM Fixed 400 v 285 510 C834 022 if PTM Fixed 600 v 285 516 C840 001 if PTM Fixed 3000 v 285 503 C841 0068 if PTM Fixed 5000 v 285 509 C855 0068 if PTM Fixed 5000 v 285 509 C861 01 if Cer Fixed 500 ...

Page 37: ... 302 393 R32 10k y2w Fixed Comp 10 302 103 R34 2 7 k y2w Fixed Comp 10 302 272 R40 22 k 2 w Fixed Comp 10 306 223 R41 100 k y2w Fixed Comp 10 302 104 R42 820 k y2w Fixed Comp 10 302 824 R45 10k y2w Fixed Comp 10 302 103 R46 100 k y2w Fixed Comp 10 302 104 R47 3 3 meg y2w Fixed Comp 10 302 335 R48 18k y2w Fixed Comp 10 302 184 R49 1 meg y2w Fixed Comp 10 302 105 R50 47 k y2w Fixed Comp 10 302 473 R...

Page 38: ...R142C 270 k y2w Fixed Comp 10 302 274 R142D 100k y2w Fixed Comp 10 302 104 R142E 3 3 k Vi w Fixed Comp 10 302 332 R142F 3 3 k Vi w Fixed Comp 10 302 332 R142G 1 2 k y2w Fixed Comp 10 302 122 R145 22 k y2w Fixed Comp 10 302 223 R146 2 meg 2w Var Comp UNBLANKING ADJ 311 042 R151 47 0 y2w Fixed Comp 10 302 470 R154 1 k 25 w Fixed WW 5 308 038 R155 100 0 y2w Fixed Comp 10 302 101 R156 15k 2w Fixed Com...

Page 39: ...Comp 10 302 470 R184 15k 10 w Fixed WW 5 308 024 J R186 470 V i w Fixed Comp 10 302 470 J R187 47 0 Vi W Fixed Comp 10 302 470 R188 15k 10 w Fixed WW 5 308 024 R191 220 0 Vi w Fixed Comp 10 302 221 J R193 22 0 V i w Fixed Comp 10 302 220 R196 47 0 2 w Fixed Comp 10 306 470 R197 150 0 1 w Fixed Comp 10 304 151 R198 220 0 Vi w Fixed Comp 10 302 221 J R201 100 meg 2 w Fixed Comp 10 314 005 R202 100 m...

Page 40: ...2 102 R301 330 k 1 w Fixed Comp 10 304 334 R302 1 k y2w Fixed Comp 10 302 102 R303 100 k y2w Fixed Comp 10 302 104 R304 500 k 2 w Var Comp L F COMP 311 034 R312 470 k y2w Fixed Comp 10 302 474 R313 120 k y2w Fixed Comp 10 302 124 R314 68 k y2w Fixed Prec 1 309 042 R315 490 k y2w Fixed Prec 1 309 002 R317 370 k y2w Fixed Prec 1 309 055 R318 666 6 k Vi w Fixed Prec 1 309 007 R324 10k 10 w Fixed WW 5...

Page 41: ...560 0 y2w Fixed Comp 10 302 561 R444 560 0 V i w Fixed Comp 10 302 561 R448 220 0 V i W Fixed Comp 10 302 221 R449 220 0 y2w Fixed Comp 10 302 221 R601 10O 1w Fixed Comp 10 304 100 R613 56 k y2w Fixed Comp 10 302 563 R614 39 k y2w Fixed Comp 10 302 393 R616 100 k y2w Fixed Comp 10 302 104 R618 1 meg y2w Fixed Comp 10 302 105 R620 1 k y2w Fixed Comp 10 302 102 R624 143 k 1 w Fixed Prec 1 310 088 R6...

Page 42: ... k y2w Fixed R814 2 meg 2 w Var R815 3 3 meg y2w Fixed R817 10k 2 w Fixed R820 120 k y2w Fixed R821 1 k y2w Fixed R830 470 0 1w Fixed R831 33 k y2w Fixed R833 82 k y2w Fixed R834 3 3 k y2w Fixed R840 22 k y2w Fixed Comp 10 302 102 Prec 1 309 006 Prec 1 309 007 WW 5 308 037 WW 5 308 037 Comp 10 304 100 Comp 10 302 104 Comp 10 302 273 Comp 10 302 274 Comp 10 302 474 Comp 10 302 102 Comp 10 302 102 P...

Page 43: ...SELECTOR unwired wired 260 219 SW22 MANUAL TRIGGER 260 016 SW40 SWEEP MODE 260 134 SW48 RESET 260 016 SW50 MANUAL TRIP PULSE 260 016 SWl 76 MICROSECONDS CM 260 220 262 170 SW405 ATTENUATOR 260 214 SW425 POSITIONING 260 217 262 168 SW435 VARIABLE 260 014 SW440 VARIABLE DEFLECTION SENSITIVITY MONITO 260 218 SW445A SIGNAL MODE MARKER Front 260 216 SW445B SIGNAL MODE Rear 260 215 SW601 AC POWER 260 19...

Page 44: ...V I43 6AS5 154 018 V I44 6CL6 154 031 V I53 12BH7 154 046 V I54 6CL6 154 031 V I64 6CL6 154 031 V I72 6X4 154 035 V I73 12BH7 154 046 V I74 6CL6 154 031 V I83 12BH7 154 046 V I93 12BH7 154 046 V201 1X2 154 005 V202 1X2 154 005 V203 1X2 154 005 V204 1X2 154 005 V205 1X2 154 005 V225 6BQ7A 154 028 V242 T12G 158 001 V243 6BQ7A 154 028 V250 6AN8 154 078 V264 6CL6 154 031 V312 6AL5 154 016 V313 12AU7 1...

Page 45: ...0 V654 6AU6 V667 6080 V672 6X4 V674 6AU6 V687 6AU5 V804 6C4 V814 12AU7 V820 6AU5 V830 6AQ5 V859 T53P11 Tektronix Part Number 154 056 154 022 154 056 154 022 154 056 154 035 154 022 154 021 154 029 154 041 154 021 154 017 154 137 PARTS LIST TYPE 507 5 13 ...

Page 46: ...2 116 59 r D B TYPE 507 OSCILLOSCOPE A BLOCK DIAGRAM BLOCK DIAGRAM ...

Page 47: ... 225 V EXT FROMCATH PIN 3 V243A TIME MARK GEN DIAG J_ C 9 47 r c jA e 4 1 6 5 9 TYPE 507 OSCILLOSCOPE A SWEEP TRIGGER TRIP PULSE SWEEP TRIGGER ...

Page 48: ... 475V 1 TYPE 507 OSCILLOSCOPE SWEEP GENERATOR SWEEP GENERATOR ...

Page 49: ... TYPE 507 OSCILLOSCOPE TIME MARK GENERATOR Z J3 TIME MARKER ...

Page 50: ... 750 V TYPE 507 OSCILLOSCOPE A ...

Page 51: ...HORIZONTAL AMPLIFIER 10 29 58 d O J S HORIZONTAL AMPLIFIER ...

Page 52: ...SW405 ATTENUATOR FROM POWER SUPPLY R448 1 c 448 220 J 6 25 if C449 J 3 7 C 6 25 if j R449 220 TO R229 TIME MARK GEN DIAG TO ALL POINTS MARKED AS INDICATED J J DECOUPLING NETWORKS TYPE 507 OSCILLOSCOPE ...

Page 53: ...RT DEFLECTION PLATES I EXTERNAL I I NORMAL VARIABLE POSITION I INTERNAL I I MARKER I I EXTERNAL I I REVERSED C 442 I 01 MARKER INPUT FROM C 268 TIME MARK GEN 0V 50 V 100 V SW440 VARIABLE DEFLECTION SENSITIVITY MONITOR 1R 6 I I I NORMAL Q l I REVERSED O EXTERNAL VOLTMETER o I VERTICAL DEFLECTION SYSTEM 9 8 A VERTICAL AMPLIFIER ...

Page 54: ...T602 TYPE 507 OSCILLOSCOPE POWER SUPPLY ...

Page 55: ... iv V674 V667 V654 V634 V614 l l A La POWER SUPPLY CHASSIS V830 V804 V814 V820 A A A POWER SUPPLY CHASSIS 5 m Z 3 3 E5 z o ...

Page 56: ...TYPE 507 OSCILLOSCOPE A CRT CIRCUIT ...

Page 57: ......

Page 58: ...s A resistor marked 2 7 k has a resistance of 2 700 ohms The symbol M stands for million For example a resistor marked 5 6 M has a resistance of 5 6 megohms Unless otherwise specified on the circuit diagram capacitance values mark ed with the number 1 and numbers greater than 1 are in juljulf For example a capacitor marked 3 3 would have a capacitance of 3 3 micromicrofarads Capacitance values mar...

Page 59: ... 1 ...

Page 60: ...le WARRANTY All Tektronix instrum ents are fully guaranteed against defective materials and workmanship for one year Should replacement parts be required whether at no charge under w arranty or at established net prices notify us promptly including sufficient details to identify the required parts W e will ship them pre paid via air if requested as soon as possible usually within 24 hours Tektroni...

Reviews: