TDK Ferrites EE320x250x20 Summary Manual Download Page 8

(7/7)

003-02 / 20101108 / e16_1.fm

• All specifications are subject to change without notice.

DIMENSIONAL RESONANCE

Dimensional resonance is a phenomenon which increases loss 

and decreases magnetic permeability by electromagnetic standing 

waves when the magnetic field of the core frequency is applied.

The phenomenon appears when the maximum dimension of the 

cross section of the core perpendicular to the magnetic field is the 

integral multiple of about half of the electromagnetic wavelength 

λ

.

C: Electromagnetic wave speed in a vacuum(3.0

×

10

8

m/s)

µ

r

: Relative magnetic permeability

ε

r

: Relative permissivity

f: Frequency of the applied magnetic field(electromagnetic wave)

As 

µ

e decreases by inserting into the gap, using the same core 

enables high frequency wave usage as indicated by the formula 

above.

As dimensional resonance quickly decreases magnetic permeabil-

ity, design the actual frequency to avoid dimensional resonance.  

In the case of possible dimensional resonance, it can be protected 

against by dividing the core in the magnetic circuit direction and 

bonding them.

RESONANCE DIMENSION vs. FREQUENCY 

CHARACTERISTICS

GENERAL PRECAUTIONS WHEN USING FERRITE CORE

• When selecting the material/form of the ferrite core, while 

considering the margins select from the range in the catalog 

(product manual) display where factors such as inductance 

value, maximum saturation flux density, core loss, temperature 

characteristics, frequency characteristics and Curie temperature 

are concerned. 

• Select material that does not corrode or react in order to avoid 

insulation failure or a layer short, and also be careful to avoid 

loose winding of the core or causing damage to the wire.

• Be careful that the equipment and tools you use do not strike the 

core in order to avoid core cracks. 

• Please consider using cases, bobbins or tape for insulation 

purposes. 

• When using cases and bobbins, select those with a heat 

expansion coefficient as close to that of the ferrite as possible. 

• When laying out the case, bobbin, coil and the ferrite core, 

create clearance between each part in order to prevent any core 

cracks and to assure insulation. 

• Please handle with care, since a ferrite core is susceptible to 

shock. 

• The outward appearance is determined according to the 

standard of our company. 

• Do not place close to strong magnets.

• Be careful not to cause shock by the use of equipment and tools. 

• Be careful not to expose to rapid change in temperature, since it 

is also susceptible to thermal shock. 

• Careless handling may hurt your skin, since the corners of the 

polished surface of the ferrite are very sharp, and in some 

cases, burrs may have formed on the surface. 

• Please be very careful when stacking and handling the 

containers, since some ferrite cores are heavy, and can cause 

injury, toppling or back pain. 

• Where inner packaging is concerned, please be careful not to 

damage the core when taking it out from the container since the 

packing materials used in order to prevent damage during 

transportation may make it difficult to take out.

• Do not reprocess the ferrite core as it can cause problems, such 

as injury.

λ

=

f × 

µ

r

ε

r

×

C

10

3

10

2

10

1

10

3

10

2

10

1

Frequency(kHz)

Resonant dimension

( mm

)

PE22

PC40

Summary of Contents for Ferrites EE320x250x20

Page 1: ...e This means that in conformity with EU Directive 2002 95 EC lead cadmium mercury hexavalent chromium and specific bromine based flame retardants PBB and PBDE have not been used except for exempted ap...

Page 2: ...ulated over the years and advanced production technologies to offer large high quality cores for high frequency high power power supplies In the following information introduce ferrite cores that used...

Page 3: ...500 380 530 430 Remanent flux density Br 23 C mT 140 125 170 Coercive force Hc 23 C A m 16 15 13 Core loss 25kHz 200mT Pcv 90 C kW m3 79 64 60 100 C 80 70 68 100kHz 200mT 520 420 400 Electrical resis...

Page 4: ...000 10 100 1000 10000 50mT 100mT 150mT 200mT 250mT 300mT Frequency kHz P cv kW m 3 Material PE22 Temp 60 C 1 10 100 1000 10000 10 100 1000 10000 50mT 100mT 150mT 200mT 250mT 300mT Frequency kHz P cv k...

Page 5: ...00 50mT 100mT 150mT 200mT 250mT 300mT Frequency kHz P cv kW m 3 Material PC40 Temp 60 C 1 10 100 1000 10000 10 100 1000 10000 50mT 100mT 150mT 200mT 250mT 300mT Frequency kHz P cv kW m 3 Material PC40...

Page 6: ...00 50mT 100mT 150mT 200mT 250mT 300mT Frequency kHz P cv kW m 3 Material PE90 Temp 60 C 1 10 100 1000 10000 10 100 1000 10000 50mT 100mT 150mT 200mT 250mT 300mT Frequency kHz P cv kW m 3 Material PE90...

Page 7: ...C i PE22 PE90 PC40 4000 3000 f 1kHz Hm 0 4A m 2000 3000 4000 5000 6000 7000 0 100 200 300 Flux density mT a 120 C 100 C 80 C 60 C 40 C 23 C Material PC40 f 16kHz 2000 3000 4000 5000 6000 7000 0 100 20...

Page 8: ...elect material that does not corrode or react in order to avoid insulation failure or a layer short and also be careful to avoid loose winding of the core or causing damage to the wire Be careful that...

Reviews: