TDK Dualeta iQA Series Datasheet Download Page 14

 

 

 

 

 

 

 

 

 

Advance Data Sheet: Dualeta™ iQA Series – Dual Quarter Brick

 

©2002-2005  TDK Innoveta Inc.  
iQAFullDatasheet080505 2.doc 8/3/2006 

(877) 498-0099

14/19

Thermal Management: 

 

An important part of the overall system 
design process is thermal management; 
thermal design must be considered at all 
levels to ensure good reliability and lifetime 
of the final system.  Superior thermal design 
and ability to operate in severe application 
environments are key elements of a robust, 
reliable power module. 
 
A finite amount of heat must be dissipated 
from the power module to the surrounding 
environment. This heat is transferred by the 
three modes of heat transfer:  convection, 
conduction and radiation.  While all three 
modes of heat transfer are present in every 
application, convection is the dominant 
mode of heat transfer in most applications.  
However, to ensure adequate cooling and 
proper operation, all three modes should be 
considered in a final system configuration. 
 
The open frame design of the power module 
provides an air path to individual 
components. This air path improves heat 
conduction and convection to the 
surrounding environment, which reduces 
areas of heat concentration and resulting hot 
spots. 

 

Test Setup   

The thermal performance data of the power 
module is based upon measurements 
obtained from a wind tunnel test with the 
setup shown below.  This thermal test setup 
replicates the typical thermal environments 
encountered in most modern electronic 
systems with distributed power 
architectures.  The electronic equipment in 
optical networking, telecom, wireless and 
advanced computer systems operate in 
similar environments and utilize vertically 
mounted PCBs or circuit cards in cabinet 
racks. 
 
The power module, as shown in the figure, 
is mounted on a printed circuit board (PCB) 
and is vertically oriented within the wind 
tunnel.  The cross section of the airflow 
passage is rectangular.  The spacing 
between the top of the module or heatsink

 

(where applicable) and a parallel facing PCB 
is kept at a constant (0.5 in).  The power 
module orientation with respect to the airflow 

direction can have a significant impact on 
the module’s thermal performance. 
 

Thermal Derating:  

For proper application of the power module 
in a given thermal environment, output 
current derating curves are provided as a 
design guideline in the

 

AIRFLOW 

Air Velocity and Ambient 
Temperature Measurement 
Location

 

O

W

12.7
(0.50)

 

Module 
Centerline

 

Air Passage
Centerline

 

Adjacent PCB 

76  (3.0) 

 

 

Wind Tunnel Test Setup 
Dimensions are in millimeters and (inches). 

 
Thermal Performance section.  The module 
temperature should be measured in the final 
system configuration to ensure proper 
thermal management of the power module.  
In all conditions, the power module should 
be operated below the maximum operating 
temperature shown on the de-rating curve.  
For improved design margins and enhanced 
system reliability, the power module may be 
operated at temperatures below the 
maximum rated operating temperature

.

 

 

Heat transfer by convection can be 
enhanced by increasing the airflow rate that 
the power module experiences.  The 
maximum output current of the power 
module is a function of ambient temperature 
(T

AMB

) and airflow rate as shown in the 

Summary of Contents for Dualeta iQA Series

Page 1: ...Brick format A single module which can support all your dual voltage requirements between 1 5V and 5 5V Two output trim options o Standard Dual Trim wide range independent adjustment of either output...

Page 2: ...ut Current Maximum Output Power Efficiency iQA48015A050M 000 36V to 75V 5 0 3 3V 15A 75W 87 iQA48015A033M 000 36V to 75V 3 3 2 5V 15A 50W 85 3320 Matrix Drive Suite 100 Richardson Texas 75082 Phone 87...

Page 3: ...anical Specification Dimensions are in mm in Unless otherwise specified tolerances are x x 0 5 0 02 x xx and x xxx 0 25 0 010 Recommended Hole Pattern top view Pin Assignment PIN FUNCTION PIN FUNCTION...

Page 4: ...Io Io max Tc 25 C Startup Delay Time from on off 10 mS Vo 0 to 0 1 Vo nom Vin Vi nom Io Io max Tc 25 C Output Voltage Rise Time 50 mS Io Io max Tc 25 C Vo 0 1 to 0 9 Vo nom Inrush Transient 0 1 A2 s I...

Page 5: ...hreshold 19 A Vo1 0 9 Vo nom Tc Tc max Short Circuit Current 3 A Vo 0 25V Tc 25 C average output current in current limit hiccup mode 30 25 80 70 mVpp mvpp Output Ripple and Noise Voltage Vout1 Vout2...

Page 6: ...Typical Efficiency vs Input Voltage at Ta 25 C Typical Power Dissipation vs Input Voltage at Ta 25 C 3 285 3 29 3 295 3 3 3 305 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output Current Io1 A Io2 0A Outpu...

Page 7: ...5 16 17 18 19 20 Output Current Io1 A Io2 0A Output Voltage Vo1 V Vin 36V Vin 48V Vin 75V 2 4 2 45 2 5 2 55 2 6 10 11 12 13 14 15 16 17 18 19 20 Output Current Io2 A Io1 0A Output Voltage Vo2 V Vin 36...

Page 8: ...0 65 70 75 Input Voltage V Output Vo2 V Io1 Io2 0A Io1 Io2 3 75A Io1 Io2 7 5A Typical Vo1 Output Voltage vs Input Voltage Characteristics Typical Vo2 Output Voltage vs Input Voltage Characteristics Tr...

Page 9: ...25V Tc 25 C average output current in current limit hiccup mode 40 35 80 70 mVpp mvpp Output Ripple and Noise Voltage Vout1 Vout2 Vout1 Vout2 10 10 mVrms mVrms Measured with 47uF Tantalum and 1uF cer...

Page 10: ...in 36V Vin 48V Vin 75V Typical Efficiency vs Input Voltage at Ta 25 C Typical Power Dissipation vs Input Voltage at Ta 25 C 5 5 005 5 01 5 015 5 02 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Output Current...

Page 11: ...11 12 13 14 15 16 17 18 Output Current Io1 A Io2 0A Output Voltage Vo1 V Vin 36V Vin 48V Vin 75V 3 2 3 25 3 3 3 35 3 4 10 11 12 13 14 15 16 17 18 Output Current Io2 A Io1 0A Output Voltage Vo2 V Vin...

Page 12: ...10 21 36 52 Rup2 k 55 28 18 14 Rup2 is connected between Trim2 and Vout2 Rup 3 01Vonom 100 Vo 1 225 Vo 301 4 01 Vo Vo 1000 Trim down independent trim Vout1 V 4 5 3 3 2 5 1 8 Trim from nominal Vo 10 34...

Page 13: ...flow from pin 3 to pin 1 Maximum Io1 output current Io2 0 vs ambient temperature at nominal input voltage for airflow rates natural convection 60lfm to 400lfm with air flow from pin 3 to pin 1 0 2 4 6...

Page 14: ...tronic equipment in optical networking telecom wireless and advanced computer systems operate in similar environments and utilize vertically mounted PCBs or circuit cards in cabinet racks The power mo...

Page 15: ...ng heatsink assembly the base plate to heatsink interface must be carefully managed A thermal pad may be required to reduce mechanical assembly related stresses and improve the thermal connection Plea...

Page 16: ...Adjustment The output voltages of the power module may be adjusted by using an external resistor connected between the Trim terminal and either the Vo or RTN terminal If the output voltage adjustment...

Page 17: ...al Characteristics section for trim adjustment The current limit set point does not increase as the module is trimmed down so the available output power is reduced Trim Vo2 Vo1 RTN Rup Circuit to incr...

Page 18: ...nditions column Reliability The power modules are designed using TDK Innoveta s stringent design guidelines for component derating product qualification and design reviews Early failures are screened...

Page 19: ...ge that exceeds 60Vdc the output can be considered SELV only if the following conditions are met 1 The input source is isolated from the ac mains by reinforced insulation 2 The input terminal pins are...

Reviews: