Rev. 0.1 7/13
Copyright © 2013 by Silicon Laboratories
Si5328-EVB
S i 5 3 2 8 - E V B
S i 5 3 2 8 - E V B
F O R
S
Y N C
E
1. Introduction
The Si5328-EVB provides a platform for evaluating Silicon Laboratories' Si5328 Any-Frequency Precision Clock
Timing IC. The Si5328 is controlled by a microprocessor or MCU (micro-controller unit) via an I
2
C or SPI interface.
The Si5328 is a jitter attenuator with a loop bandwidth ranging from 0.05 to 6 Hz. When combined with a
low-wander, low-jitter reference oscillator, the Si5328 meets all of the wander, MTIE, TDEV, and other
requirements listed in ITU-T G.8262/Y.1362 and commonly referred to as “SyncE” or “Synchronous Ethernet”.
Figure 1. Si5328-EVB
2. Applications
The Si5328 Any-Frequency Precision Clock has a comprehensive feature set for SyncE applications, including
any-frequency synthesis, multiple clock inputs, multiple clock outputs, a programmable loop bandwidth supporting
G.8262 options EEC1 and EEC2, alarm and status outputs, hitless switching between input clocks, programmable
output clock signal format (LVPECL, LVDS, CML, CMOS), and output phase adjustment between output clocks.
For more details, consult the Silicon Laboratories timing products web site at
www.silabs.com/timing
.
The evaluation board (EVBs) has an MCU (C8051F340) that supports USB communications with a PC host. The
Si5328 is controlled and monitored through the serial port (either SPI or I
2
C). A CPLD sits between the MCU and
the Any-Frequency Precision Clock device that performs voltage-level translation. Ribbon headers and SMA
connectors are included so that external clock in, clock out, and status pins can be easily accessed by the user.
The user also has the option of bypassing the MCU and controlling the parts from an external serial device.
Onboard termination is included so that the user can evaluate single-ended or differential as well as ac or dc
coupled clock inputs and outputs. A separate and optional DUT (Device Under Test) power supply connector is
included so that the Any-Frequency Precision Clocks can be run at either 1.8, 2.5 or 3.3 V, while the USB MCU
remains at 3.3 V powered by the USB connector. LEDs are provided for convenient monitoring of key status
signals.
Top (U11 TCXO Plastic Cover Removed)
Bottom