background image

S i 5 3 1 0 - E V B

2

Rev. 0.71

Functional Description

The evaluation board simplifies characterization of the
Si5310 precision clock multiplier/regenerator IC by
providing access to all of the Si5310 I/Os. Device
performance can be evaluated by following the “Test
Configuration” section. Specific performance metrics
include jitter tolerance, jitter generation, and jitter
transfer.

Power supply

The evaluation board requires one 2.5 V supply. Supply
filtering is placed on the board to filter typical system
noise components; however, initial performance testing
should use a linear supply capable of supplying 2.5 V
±5% DC.

CAUTION

: The evaluation board is designed so that the

body of the SMA jacks and GND are shorted. Care must
be taken when powering the PCB at potentials other
than GND at 0.0 V and VDD at 2.5 V relative to chassis
GND.

Self-Calibration

The Si5310 device provides an internal self-calibration
function that optimizes the loop gain parameters within
the internal DSPLL

TM

. Self-calibration is initiated by a

high-to-low transition of the PWRDN/CAL signal while a
valid reference clock is supplied to the REFCLK input.
On the Si5310-EVB board, a voltage detector IC is
utilized to initiate self-calibration. The voltage detector
drives the PWRDN/CAL signal low after the supply
voltage has reached a specific voltage level. This circuit
is described in Silicon Laboratories application note
AN42. On the Si5310-EVB, the PWRDN/CAL signal is
also accessible via a jumper located in the lower left-
hand corner of the evaluation board. PWRDN/CAL is
wired to the center post (signal post) between 2.5 V and
GND.

Device Power Down

The Si5310 device can be powered down via the
PWRDN/CAL signal. When PWRDN/CAL is driven high
(2.5 V) the evaluation board will draw minimal current.
On the Si5310-EVB board, the PWRDN/CAL signal may
be controlled via a jumper located in the lower left-hand
corner of the evaluation board. PWRDN/CAL is wired to
the center post (signal post) between 2.5 V and GND.

CLKIN, CLKOUT, MULTOUT

These high-speed I/Os are wired to the board perimeter
on 30 mil (0.030 inch) 50

 microstrip lines to the end-

launch SMA jacks as labeled on the PCB. These I/Os
are AC coupled to simplify direct connection to a wide
array of standard test hardware. Because each of these
signals are differential both the positive (+) and negative
(–) terminals must be terminated to 50

. Terminating

only one side will degrade the performance of the
Si5310 device. The CLKIN inputs are terminated on the
die with 50

 resistors. 

Note:

The 50

 termination is for each terminal/side of a dif-

ferential signal, thus the differential termination is actu-
ally 50

+ 50

= 100

.

REFCLK

REFCLK is used to center the frequency of the Si5310
DSPLL so that the device can lock to the CLKIN signal.
For a given CLKIN rate, there are five choices for the
REFCLK frequency. These five options are all multiples
of the CLKIN frequency, as indicated in Table 1. The
REFCLK frequency is automatically detected by the
Si5310 device, so no digital control inputs are needed
for REFCLK frequency selection. REFCLK may be
synchronous or asynchronous with respect to CLKIN.
However, REFCLK must be within ±100 PPM of the
target CLKIN frequency multiple. REFCLK is ac coupled
to the SMA jacks located on the top side of the
evaluation board. The REFCLK inputs are terminated
on the die with 50

 resistors. 

Note:

The 50

 termination is for each terminal/side of a dif-

ferential signal, thus the differential termination is actu-
ally 50

+ 50

= 100

.

MULTSEL

MULTSEL is a binary input to the Si5310 device that
selects the frequency range for the MULTOUT clock
output. The MULTOUT output frequency is a multiple of
the CLKIN input frequency. The frequency for
MULTOUT will be in either the 150–167 MHz frequency
range or the 600–668 MHz frequency range depending
on the state of the MULTSEL signal as indicated in
Table 1. On the Si5310 evaluation board, MULTSEL is
controlled via a jumper located in the lower left-hand
corner of the board. MULTSEL is wired to the center
post (signal post) between 2.5 V and GND. 

The jumper configurations for MULTSEL are indicated
in Figure 1. 

Summary of Contents for Si5310-EVB

Page 1: ...s Si5310 precision clock multiplier regenerator IC All high speed I Os are AC coupled to ease interfacing to industry standard test equipment Features Single 2 5 V power supply Differential I Os ac coupled Simple jumper configuration Function Block Diagram REFCLK ZC 50 ZC 50 ZC 50 ZC 50 CLKIN CLKOUT MULTOUT ZC 50 ZC 50 ZC 50 ZC 50 Pulse Generator Freq Synth Spectrum Analyzer Scope Spectrum Analyze...

Page 2: ...t signal post between 2 5 V and GND CLKIN CLKOUT MULTOUT These high speed I Os are wired to the board perimeter on 30 mil 0 030 inch 50 microstrip lines to the end launch SMA jacks as labeled on the PCB These I Os are AC coupled to simplify direct connection to a wide array of standard test hardware Because each of these signals are differential both the positive and negative terminals must be ter...

Page 3: ... short term stability In Figure 2 either position A or B can be used when measuring this parameter Oscilloscope An oscilloscope can measure jitter from the clock edges within the trigger to capture bandwidth Typically the jitter measured is expressed in picoseconds peak to peak and RMS relative to the average edge position A histogram can be used to capture the jitter distribution Table 1 CLKIN CL...

Page 4: ...ides a RMS jitter value Jitter Transfer Jitter transfer is the ratio of the input jitter spectrum to the output jitter spectrum Comparing the power levels from the input jitter spectrum with the output jitter spectrum provides the jitter transfer details To characterize this parameter a modulation source is added to the synthesizer The FM modulation frequency is the jitter frequency and its relati...

Page 5: ... tantalum 10uF C5 0603 0 1uF U5 Si5310 6 12 13 16 17 20 19 15 9 10 4 5 1 2 7 11 3 8 18 14 LOL CLKOUT CLKOUT MULTOUT MULTOUT NC MULTSEL PWRDN CAL CLKIN CLKIN REFCLK REFCLK REXT VDDA VDDB VDDC GNDA GNDB GNDC VDDD JP1 C3 0603 0 1uF J9 MKDSN 2 5 3 5 08 1 2 POS1 POS2 J7 JC 142 0701 801 1 2 SIG BODY J3 JC 142 0701 801 1 2 SIG BODY JP4 2 5V C15 0603 100pF C2 0603 0 1uF JP2 R1 0603 10k C6 0603 0 1uF C8 06...

Page 6: ...1 2340 6111TN or 2380 6121TN 3M JP2 CONNECTOR HEADER 3X1 2340 6111TN or 2380 6121TN 3M J1 J2 J3 J4 J5 J6 J7 J8 CONNECTOR SMA SIDE MOUNT 901 10003 Amphenol J9 CONNECTOR POWER 2 POS 1729018 Phoenix Contact L1 RESISTOR SM 0 OHM 1206 CR1206 8W 000T Venkel R1 RESISTOR SM 10K 1 0603 CR0603 16W 1002FT Venkel R2 RESISTOR SM 2 55K 1 0603 CR0603 16W 2551FT Venkel U4 MAX6376XR23 T MAX6376XR23 T Maxim U5 Si53...

Page 7: ...Si5310 EVB Rev 0 71 7 Figure 4 Si5310 Silkscreen ...

Page 8: ...Si5310 EVB 8 Rev 0 71 Figure 5 Si5310 Component Side ...

Page 9: ...Si5310 EVB Rev 0 71 9 Figure 6 Si5310 Solder Side ...

Page 10: ...ent Change List Revision 0 7 to Revision 0 71 Added bill of materials Evaluation Board Assembly Revision History Assembly Level PCB Si5310 Device Assembly Notes B 01 B B Assemble per BOM rev B 01 C 01 C C Assemble per BOM rev C 01 ...

Page 11: ...Si5310 EVB Rev 0 71 11 Notes ...

Page 12: ...th which if it fails can be reasonably expected to result in significant personal injury or death Silicon Laboratories products are generally not intended for military applications Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including but not limited to nuclear biological or chemical weapons or missiles capable of delivering such weapons Tradem...

Reviews: