background image

C79000-L7476-C154-03

         

GN: 30160_dr22

Manual Edition12/2006

Siemens Aktiengesellschaft

Automation and Drives
Sensors and Communication 
76181 KARLSRUHE
GERMANY

Controller

SIPART DR22

6DR2210

www.siemens.com/processautomation

Contr

oller SIP

AR

T DR22 6DR2210

12/2006

Manual Edition 

 

sipart

C79000-G7476-C154-03

@ 1 P C 7 9 0 0 0 G 7 4 7 6 C 1 5 4 @

C79000-G7476-C154

Summary of Contents for 6DR2210

Page 1: ...engesellschaft Automation and Drives Sensors and Communication 76181 KARLSRUHE GERMANY Controller SIPART DR22 6DR2210 www siemens com processautomation Controller SIPART DR22 6DR2210 12 2006 Manual Edition p sipart C79000 G7476 C154 03 1PC79000G7476C154 C79000 G7476 C154 ...

Page 2: ......

Page 3: ...SIPART DR22 6DR2210 C79000 G7476 C154 03 1 SIPART DR22 6DR2210 Edition 12 2006 Manual ...

Page 4: ...U I U U U 5 V 24 V I I U U Slot 6 Slot 5 Slot 4 Options Options I 6DR2210 4 24 V UC 6DR2210 5 115 230 V AC switchable Block diagram Standard settings S0 to S4 Analog inputs S5 to S21 S200 to S217 Assembly Slot 5 and 6 S22 S23 Digital inputs S24 to S48 S218 to S228 Setpoint command S49 to S53 Control algorithm S54 to S60 Y switching S61 to S66 Y display S67 to S68 Analog outputs S69 to S75 S247 to ...

Page 5: ... indicates a potential situation which if not avoided may result in an undesirable result or state NOTE highlights important information on the product using the product or part of the documentation that is of particular importance and that will be of benefit to the user Copyright e Siemens AG 2006 All rights reserved The reproduction transmission or use of this docu ment or its contents is not pe...

Page 6: ... 03 Trademarks SIMATICR SIPARTR SIRECR SITRANSR registered trademarks of Siemens AG Third parties using for their own purposes any other names in this document which refer to trade marks might infringe upon the rights of the trademark owners ...

Page 7: ... S1 S49 to S53 40 1 5 4 1 General recurrent functions 40 1 5 4 2 S1 0 Fixed setpoint controller with 2 independent setpoints 48 1 5 4 3 S1 1 Fixed setpoint controller with 2 dependent setpoints 51 1 5 4 4 S1 2 DDC fixed setpoint controller 52 1 5 4 5 S1 3 Follow up controller synchronized controller SPC controller 58 1 5 4 6 S1 4 commanded ratio controller 64 1 5 4 7 S1 5 Cascade control 69 1 5 4 ...

Page 8: ... mode CAE4 CAE5 UNI module s 211 3 3 12 1 Measuring range for mV SEnS Mv 212 3 3 12 2 Measuring range for U I SEnS Mv 212 3 3 12 3 Measuring range for thermocouple with internal reference point SEnS tc in 213 3 3 12 4 Measuring range for thermocouple with external reference point SEnS tc EH 213 3 3 12 5 Measuring range for PT100 4 wire and PT100 3 wire connection SEnS Pt 3L PT 4L 213 3 3 12 6 Meas...

Page 9: ...his equipment is conditional upon proper transport proper storage installation and assembly as well as on careful operation and commissioning D Scope of delivery When the controller is delivered the box contains 1 Controller as ordered 1 three pin plug at 115 230 V AC or special plug at 24 V UC 2 Clamps pluggable 1 Assembly and installation instructions Order number C79000 M7474 C38 D Basic equipm...

Page 10: ...e user can easily add extra analog function blocks and connect them to each other and to the interfaces of the input range with the software This achieves optimum adaptation even to complex problems The named programming possibilities guarantee a great flexibility in the use of the controller and allow fast easy adapting of the device to the problem so that the SIPART DR22 can be used universally ...

Page 11: ...igital inputs BE 0 24 V and eight digital outputs BA 0 24 V 50 mA which can be used for different func tions depending on the configuration The SIPART DR22 also has three analog outputs AA which can all supply a current signal from 0 to 20 mA or 4 to 20 mA and be assigned to different variables A short circuit proof L output DC 24 V 100 mA is available for supplying transmitters The power supply u...

Page 12: ...ed optionally with modules for expanding digital inputs or digital outputs The following assemblies are possible 2 relays 4 digital outputs 2 digital inputs 5 digital inputs 3 analog outputs 3 digital inputs 1 analog output with digital fault output yholdfunction with remote supply 3 analog inputs 1 Power supply unit 2 Casing 3 Front module 3 2 1 Figure 1 1 Front view of the SIPART DR22 ...

Page 13: ...ctor contact spring 2 Slot 6 3 Slot 5 4 Slot 1 basic board 5 Slot 2 6 Slot 3 7 Slot 4 SES RS 232 RS 485 Profibus DP 8 Grounding screw 9 DIN rail delivered with the interface relay 10 Selector switch Mains voltage 11 Mains plug 12 Power supply unit 1 12 11 10 9 8 3 7 6 5 4 2 Figure 1 2 Rear view of the SIPART DR22 ...

Page 14: ... good viewing angle The control elements are short stroke switches with a tangible pressure point and high return force Main board The main board contains the field signal conditioning of the standard controller the CPU Central Processing Unit and the connections through the interface board to the module slots The field signals are fed through protective circuits for external static or dynamic ove...

Page 15: ...ific program written in this way is saved in the non volatile user program memory 1 4 2 Description of the option modules The following option modules are described in this chapter 6DR2800 8A Module with 3 AE U or I input 6DR2800 8J I U module 6DR2800 8R R module 6DR2800 8V UNI module 6DR2805 8A Reference junction terminal 6DR2805 8J Measuring range for TC internal connector 6DR2801 8D Module with...

Page 16: ...slide switch on the module and a rough range selection made Range start and end are set with the two adjusting pots on the back of the module This fine adjustment can be made by the displays on the front module with the appropriate structuring For adjustment with a remote measuring instrument the analog output can be as signed to the appropriate input The external wiring must be changed for resist...

Page 17: ...easuring for TC internal connector D measuring for TC internal connector for current 0 4 to 20 mA or voltage 0 2 to 10 V The measuring for TC internal connector is used in connection with the UNI module to measure current orvoltage The input variable is reduced to 0 20 to 100 mV by a voltage divider or shunt resistors in the measuring for TC internal connector Wiper resistors with 250 Ω or 50 Ω ar...

Page 18: ...nput module with 5 digital inputs The module serves to extend the digital inputs already existing in the standard controller The inputs are designed for the 24 V logic and are non floating The function is assigned to the input by the configuration of the controller 6DR2802 8A Analog output module with y hold function For auxiliary control device function when servicing and for extending the analog...

Page 19: ...he controller power supply fails the Yhold module is removed the main board is removed 6DR2802 8B Module with 3AA and 3BE To extend the analog outputs 0 4 to 20 mA and digital inputs can be inserted in slot 5 AA7 AA8 AA9 BE5 BE6 BE7 and in slot 6 AA4 AA5 AA6 BE10 BE11 BE12 6DR2803 8P Serial interface PROFIBUS DP The module 6DR2803 8P is a PROFIBUS DP interface module with RS 485 driver and electri...

Page 20: ...re configurations 6DR2803 8C Serial interface RS 232 RS 485 D Serial interface for RS 232 or RS 485 with electrical isolation Can be inserted in slot 4 For connecting the controller SIPART DR22 to a master system for control and monitoring All process variables can be sent the external setpoint tracking variable operating modes param eters and configurations sent and received The interface traffic...

Page 21: ...elay contacts up to 230 V UC The module can be snapped onto a mounting rail on the back of the controller The mounting rail is delivered with the interface relay module One or two relay modules with 2 relays each are installed depending on the version Every relay has a switching contact with spark quenching in both switching branches In AC consumers with a very low power the current flowing e g ho...

Page 22: ...RAM At S100 1 the digital x display flashes as indication after a Power On Reset it is acknowledged by the Shift key 12 Flashing is suppressed by S100 0 Watch dog reset When a watch dog reset occurs the parameters and configurations from the user program memory are reloaded into the RAM The current process variables and the status signals are read out of the RAM for further processing There are no...

Page 23: ... Power On Reset last value 0 mA 0 mA 0 0 0 Monitored compo nents of the CPU defective change main board MEM Err User program memory Watch Dog Reset 0 value last value 0 mA 0 0 0 User program memory not plugged memory when storing continues operating with current data p g memory not plugged or defective plug or change oP 5 1 Data com munication μP slot 5 cyclic 0 continues operating with current da...

Page 24: ... is permanently connected see figure 1 5 page 24 With S4 1 the permanent connection is canceled and converted into a freely connectable input range see chapter 1 5 2 page 25 Every one of the maximum 11 analog inputs is fed through an AD converter which performs the 50 or 60 Hz interference suppression by averaging over 20 or 16 2 3 ms After this the signal range 0 to 20 mA or 4 to 20 mA is normali...

Page 25: ...block Fu setting of the 13 vertex values see chapter 1 5 4 figure 1 19 page 45 to figure 1 23 page 46 The outputs of the analog inputs AE1A to AEbA are now assigned to the function inputs FE1 to FE12 by the structure switches S15 to S19 or S212 to S217 The outputs AE1A to AEbA and the function inputs FE1 to FE12 are available for the assignment to analog outputs the limit value alarm and the param...

Page 26: ...Slot 6 AE6 I U D 4 bis 20 mA 0 1 2 3 S200 AE7 I U A AE8 I U Slot 5 AE9 I U D AE10 I U A AE11 I U 4 to 20 mA 0 1 2 3 S205 0 1 S206 tF6 AE6A AE6A 0 1 S211 tFb AEbA AE7A AE8A AE9A o AE1A AE2A AE3A AEbA 1 2 3 11 0 S16 o AE1A AE2A AE3A AEbA 1 2 3 11 0 S17 S4 1 drawn at S4 1 freely function inputs 1 1 0 1 FE1 FE2 to 11 3 S21 1 3 0 1 FE3 0 1 S13 tF4 AE4A AE4A 0 1 S14 tF5 AE5A AE5A o AE1A AE2A AE3A AEbA 1...

Page 27: ...ar parameters are arranged with a setting range of 1 999 to 19 999 corresponding to 199 9 to 1999 9 a number of normal constants as well as other variables gained from the controller as data source The function blocks have a different number of inputs data sinks and 1 output each data source depending on the function depth The function blocks function transmitter and correction computer have assig...

Page 28: ...3 f E2 E3 rE1 Fu1 Fu2 A AS 4 AS F nr AS 1 AS 2 AS 3 A E1 E2 E3 H Co 4 Co F nr Co 1 Co 2 Co 3 nA 4 nA F nr nA 1 nA 2 nA 3 A Co1 Co2 nA1 nA2 no 4 no F nr no 1 no 2 no 3 E1 E2 E3 A no1 no2 1 P01 P15 1 0 1 05 Connectable parameters Constants BE01 BE09 Digital inputs AE1 AE5 Fault message AE A1 A4 Alarms A1 to A4 Int1 Int2 Status message SPI1 SPI2 Setpoints w1 w2 SP1 SP2 yI yII Manipulated variable y S...

Page 29: ... output variable A in the range from 199 9 to 199 9 with the function entered by the user A f E The function is entered by the parameters vertex value 1 to 13 for 10 to 110 of E in intervals of 10 Parabolae are set by the computing program between these vertex values which interlink tangentially the vertex values so that a constant function is produced The vertex values at 10 and 110 of E are requ...

Page 30: ...e 3rd input must be set outside the working range to a maximum value otherwise a maximum value limiting takes place 1 5 2 5 Correction computer for ideal gases rE1 A Δp f E2 E3 f E2 E3 PE PA E2 PA tE tA E3 tA E2 E 3 A x ΔP f E2 E3 rE1 F oFPA tA tE PA PE rE1 1 rE1 2 rE1 3 rE 4 nr 1 000 ncon ncon rE1 Figure 1 11 Function block correction computer rE1 for ideal gases The rooted signal of the active p...

Page 31: ...ipe is the same at all places If the cross section is reduced at one point the flow speed at this point should increase Ac cording to Bernoulli s energy equation the energy content of a flowing material is made up of the sum of the kinetic energy due to the speed and the potential energy of the pressure An increase in speed therefore causes a reduction in pressure This drop in pressure the so call...

Page 32: ...asure of the flow If you have chosen a certain choke the flow can be described in the calculation state or operation state qB K ρB Δp or q K ρ Δp Since the density is included in the measuring result according to the above equation measuring errors occur when the density in the operating state differs from the value based on the calculation of the choke Therefore a correction factor F is introduce...

Page 33: ...r ÂA to ÂE Range of temperature of the transmitter ÂA ÂB ÂE _C Â Pabs E Pabs B Pabs bar Figure 1 14 Display of the correction range This gives for the corrected flow q F K ρB Δp K ρB Δp TB p PB T The factor contained in the formula K ρB is already taken into account in the measurement of the active pressure and can therefore be ignored by the computer Related to the correction factor it follows A ...

Page 34: ...325 barabs and no longer to the operating state it must be corrected accordingly A qVN E2 p E3 Â PA PabsA PB PE PabsE PB tA TA TB tE TE TB with TA E B K The following applies for all computers pabsA to pabsE Transmitter range absolute pressure bar TA to TE Transmitter range absolute temperature K is formed from the transmitter range ÂA to ÂE by conversion T K 273 15 Â _C pB TB Pressure and tempera...

Page 35: ... 0 1 5 2 8 AND NOT function NAND nA1 nA2 A E1 E2 E3 E1 E2 E3 with default A E1 Negation of E1 E1 E2 E3 A 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 5 2 9 OR NOT function NOR no1 no2 A E1 E2 E3 E1 E2 E3 with default A E1 Negation of E1 E1 E2 E3 A 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0 A E1 E2 E3 AS 4 AS F nr AS 1 AS 2 AS 3 AS1 F to AS5 F ncon ncon 0 0...

Page 36: ...ddition to the outputs so that in this case the two digital inputs BE5 BE6 or BE10 BE11 can be used 5 1 5 2 5 3 5 4 5 5 6 1 6 2 6 3 6 4 6 5 BE14 BE13 BE12 BE11 BE10 6 3 6 2 6 1 BE12 BE11 BE10 5 1 5 2 5 3 BE5 BE5 1 15 BE1 5 V 24 V BE2 BE3 BE4 1 16 1 17 1 18 bE01 bE02 bE03 bE04 BE5 5 V 24 V BE6 BE7 BE8 bE05 bE06 bE07 bE08 Slot 5 6DR2801 8C 5BE BE9 bE09 S22 2 5 V 24 V bE10 bE11 bE12 bE13 Slot 6 6DR28...

Page 37: ...tive edge flips the flip flop In the following descriptions the output status of the flip flop is assumed as CB or N All control signals except Δw and Δy can also be preset by the SES at S101 2 3 4 5 and OR linked with the appropriate control signals through the digital inputs The incremental adjustment of w or y by the SES is not advisable on account of the bus run times Since the top operation h...

Page 38: ...op is set to 1 Internal LED on C LED off so that the computer mode RC Int CB only becomes active after pressing the Internal key Int 0 With S49 the Internal External key can be switched out of function and only internal or external operation preselected The control signal H is generated as an OR function by the Manual Automatic key 9 with sub sequent flip flop Hi and the control signal He whereby ...

Page 39: ...E02 2 BE03 3 BE04 4 BE05 5 BE06 6 BE07 7 BE08 8 BE09 9 BE10 10 BE11 11 BE12 12 BE13 13 BE14 14 FE09 15 FE10 16 FE11 17 FE12 18 1 0 1 1 0 S39 CBIIBE S219 S40 HeIIBE S220 S41 NIIBE S221 S42 SiIIBE S222 S223 according to fig 1 17 Page 38 PAUBE 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 S229 tSIIBE S230 wSLIBE S230 wSLIIB...

Page 40: ...I HeBE I II 0 1 2 3 4 5 S101 HeES 1 0 1 3 4 2 0 0 1 2 4 3 5 ΔwBE ΔwBE ΔyBE Δy BE Δw Δw Δy Δy 1 0 2 3 4 S64 4 S64 3 3 S64 0 1 2 2 3 4 5 0 1 S101 3 4 S64 0 1 2 S101 S101 IntES 0 1 0 1 0 1 2 1 0 CBBE II 0 1 2 3 4 5 1 0 bLbES bLSES bLPSES 1 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 0 2 1 S271 S101 1 0 1 2 from fig 1 16 p 37 only active in CB Int or CB Int II active control signals for the switching functions in...

Page 41: ...oller and enables direct manual adjustment of the manipulated variable on the front control panel N Follow up With this signal the output of the K controller and the three position step controller with external position feedback is followed up to the follow up signal yN Si Safety operation In K controllers and three position step controllers with external position feedback the manipulated variable...

Page 42: ...ression so that major changes can also be performed fast enough After every interruption in the adjustment by releasing the keys the progression starts again with the smallest adjustment step Setpoint preset wi or nominal ratio preset wvi by the SES Every time the internal setpoint can be adjusted by the keys 6 on the control front panel it is also possible to make a preset with the SES Since only...

Page 43: ...ctive setpoint is followed up to the effective setpoint so that the setpoint switching is bumpless The internal setpoint wi the external setpoint incrementally adjustable via Δw wEΔ and the external setpoint via the SES wES can be followed up The safety setpoint SH cannot be followed up The external setpoint wEA via the analog inputs can only be followed up indirectly by following up the supplying...

Page 44: ... it is not guaranteed during A operation especially in safety mode that the actual value will be driven to the desired rated value by the actuating manipulation and the follow up variable would not be correct in full x tracking Constants c1 to c7 In the individual controller types the process variables are partially linked with each other whereby the constants c1 to c3 are used for the controlled ...

Page 45: ...he y display The corresponding adjustment keys and status LED s are assigned in color and position to the displays The two analog displays always indicate the active actual value The difference between the two displays is the control difference xd or the control error xw xd The digital actual value display also indicates the current actual value except in the ratio controllers ratio controller act...

Page 46: ...process operation level The factory setting is 0 0 to 100 0 With the refresh rate parameter dr onPA the digital displays can be calmed down in the case of restless process variables Non linear process variables can be represented physi cally correctly by the linearization The display range set with dP dA and dE is transferred depending on the controller type S1 to the parameters and setpoints whic...

Page 47: ...ropriate function tables for every Un or graphically from the corresponding curve interpolate if necessary and enter the value for the respective vertex value 1 to 11 in physical variables in the structuring mode oFPA UE 8 39 526 8 900 7 35 124 7 846 6 30 722 6 790 5 26 32 5 729 4 21 918 4 664 3 17 516 3 593 2 13 114 2 514 1 8 712 1 420 0 4 31 0 300 1 0 092 1 0 tA tE UE 48 33 mV 60 50 40 30 20 10 ...

Page 48: ...because of their free utilization Setting takes place in the structure mode oFPA in the range from 199 9 to 199 9 The vertex values 0 and 100 are set with 0 or 100 so that x1 l is available again as a standard variable and the reference junction terminals for determining the display range of the digital display are correct The display range is set with the parameters dA dE and dP according to the ...

Page 49: ...oller 9 Process display xI process variable 1 xII process variable2 10 Fixed setpoint controller control system coupling x1 main controlled variable x2 auxiliary controlled variable x3 auxiliary controlled variable 11 Follow up controller control system coupling x1 main controlled variable wE external command variable 12 Double controller x1I main controlled variable wEAI external setpoint x1II ma...

Page 50: ...nent takes place depending on the control signals Int and CB according to table 1 5 Signaling of the active setpoint takes place on the LEDs Internal and C As soon as a LED lights wi2 is active 1 follow up takes place at S52 0 and S50 1 to the controlled variable x follow up does not apply for the switching wi1 wi2 atS52 1automatic modestarts withwi x xd 0 theactive setpointruns tothe oldset value...

Page 51: ...1 wi2 wi2 x x x x1 x x x x III 5 wi1 or wi2 0 0 wI wI x x 1 via CB and Int accordingly 5 2 only if there is no x tracking 3 0 5 flashing rhythm 1 1 4 adjustable 5 only at C8 0 Table 1 6 Switching the display levels The setpoint displayed with the digital w displays can also be set with the Δw adjustment keys 6 1 6 2 Fig 3 1 p 168 The LEDs Controller I Controller II signal the display level Flashin...

Page 52: ... c3 xI S52 x SA SE wI W 1 S50 FE1 FE2 FE3 factory setting c1 c2 c3 0 x x1 c1 x2 c2 x3 c3 x2 x1 x3 xdI xI W Adaptation tS x1 d I II 0000 I 0000 x d I d I II 0000 I 0000 see Fig 1 5 page 24 w wi c8 wST c9 d I III 0000 wi1 wi2 n o n o A H N Si FE11 wST see Fig 1 50 page 90 wI c8 wST c9 wi2ES 2 3 4 5 S101 0 1 SES wi1ES S101 0 1 2 3 4 5 Figure 1 25 Block diagram S1 0 fixed setpoint controller with 2 in...

Page 53: ... CB FE1 FE2 FE3 FE4 x x1 c1 x2 c2 x3 c3 x 0000 tS yH 0000 wi2 wi1 c4 c5 y ya c6 z 000 Figure 1 26 Principle representation S1 1 This controller type is always used when for example in two batch mode the second setpoint needs to be in a specific ratio to the first The ratio is set by the constants c4 and c5 Factory setting is c4 1 and c5 0 The switching and display functions are the same as at S1 0...

Page 54: ...es over the control function the controller is on standby i e it is followed up to the computer manipulated variable the control difference is reset to zero for absolutely bumpless switching by x tracking if necessary In K controller circuits the actuating current can be output parallel by the computer periphery to achieve full redundancy In this case the actuating current of the K controller is s...

Page 55: ... the computer failure With S50 a choice is made between x tracking and wi with S51 the safety setpoint is preset With S61 the priority between DDC mode and manual mode is determined If DDC mode has priority over manual mode you can select with the manual automatic switching whether opera tion is to continue after a computer failure in automatic or manual mode If manual intervention is necessary in...

Page 56: ...iption 1 5 Functional description of the structure switches 1 5 4 Controller types S1 S49 to S53 54 SIPART DR22 6DR2210 C79000 G7476 C154 03 Table 1 7 DDC controller S1 2 DDC operation has priority over manual operation S61 0 ...

Page 57: ...iption 1 5 Functional description of the structure switches 1 5 4 Controller types S1 S49 to S53 SIPART DR22 6DR2210 C79000 G7476 C154 03 55 Table 1 8 DDC controller S1 2 manual operation has priority over DDC operation S61 1 ...

Page 58: ...he table is shown for static computer switching without acknowledgement S47 0 4 By OR linking of the digital output H with the control signal Si no computer standby or computer operation can be signaled in manual or safety mode 5 0 5 Flashing rhythm 1 1 6 0 9 Flashing rhythm 0 1 off 0 9 on adjustable n is followed up to the value active before switching therefore bumpless switching The control sig...

Page 59: ... SE Int CB H S50 0 1 wi1 c1 c2 c3 Factory setting c1 c2 c3 0 Adaptation tF 0 1 S61 Si H H I wi1 0 1 S52 S51 0 1 S50 X SES x1 x2 x3 FE1 FE2 FE3 SH 2 3 S101 4 5 0 1 I 0000 II 0000 d I d I x1 H H Si wi1 ES Int CB Si H Hi He x x1 c1 x2 c2 x3 c3 w x w x x xdI xI I 0000 d I w see fig 1 5 page 24 see fig 1 50 page 90 Figure 1 29 Block diagram S1 2 DDC fixed setpoint controller ...

Page 60: ...etpoint w can be fed back by an appropriately assigned analog output to the feeding controller for follow up when using wEA or for displaying when using wEΔ This controller type is used for cascade controls with 2 separate controllers master and fol low up controllers for synchronized controls fixed setpoint controls with external setpoint pre set e g under console conditions via the incremental Δ...

Page 61: ...l signals can be set statically to 1 or 0 int via S49 CB via S24 in addition to their normal functions as Shift key or control signal with the states 1 and 0 see chapter 1 5 3 fig 1 16 page 37 and fig 1 17 page 38 The factory setting is Int 1 S49 0 and CB 1 S24 1 so that in the factory setting the internal setpoint wi is always active and cannot be switched With this setting facility it is possibl...

Page 62: ...hing the display level If the switching possibility between internal and external setpoint is blocked through S49 and S24 switching of the digital w display to the display level II is no longer used Only the digi tal x display is switched The display level II is signaled by a steady light Operation with 2 or 3 setpoints If follow up of the inactive setpoint to the active setpoint is blocked with S...

Page 63: ...1 1 1 0 1 1 wi n x wi n x 1 0 1 1 1 1 1 wi n x wi n x 1 The table is shown for static computer switching without acknowledgement S47 0 2 Source for wE at S53 0 is wEA FE3 or at S53 1 wEΔ Δw when S101 2 At S101 2 wESis active SES The external setpoint fed in via Δw wEΔ and via the SES wES is followed up When feeding in the external setpoint via FE3 wEA the feeding controller must be followed up 3 S...

Page 64: ...EA FE3 or at S53 1 wEΔ Δw when S101 2 At S101 2 wESis active SES The external setpoint fed in via Δw wEΔ and via the SES wES is followed up When feeding in the external setpoint via FE3 wEA the feeding controller must be followed up 3 SH can only be reached after wE if Int 0 and CB goes from 1 to 0 computer failure If CB 0 and Int is switched from 1 0 wi is still active Since SH is not followed up...

Page 65: ... x x1 c1 x2 c3 c4 c5 w E c4 we c5 w SL I FE11 w EA w ST S51 0 1 SH S52 0 1 CB CB 1 Int Int wi1 w c8 w ST c9 wI c8 w ST c9 w E c8 w ST c9 w E S50 0 1 A A A H N Si H Hi He I 0000 II 0000 d I d I ts SA SE w E w w w x I 0000 II 0000 d I d I x1 w x xdI xI 1 x w w SL I 1 factory setting see chapter 1 5 5 figure 1 50 page 90 Factory setting Adaptation Factory setting c4 1 c5 0 see chapter 1 5 1 figure 1 ...

Page 66: ...trolled process variable x1 w v x2 c5 With xd w x1 xd v x2 c5 x1 is given In the controlled status xd 0 the following is given v x1 c5 x2 i e in the controlled status and at c5 0 x1 x2 behaves according to the set ratio factor v A typical application are combustion rules where a fuel volume x1 beongs to every air volume x2 to guarantee optimum combustion The ratio factor range v vA to vE is determ...

Page 67: ... process variable x2 via FE2 in the freely connectable input range and the following process variable x1 via FE1 also in permanently connected input range The linearization then acts on the analog displays and the ratio formation and therefore indi rectly on the digital displays for nominal and actual ratio The ratio controller has no nominal ratio limiting because the ratio factor range already m...

Page 68: ...wing process variable is the gas flow QG with a measuring range 0 to 3 000 m3 h which is also available as a 4 to 20 mA signal In an ideal combustion the air gas ratio is L ideal 4 QL QG L λ QL QG The air factor λ is then 1 and should be adjustable in the range from 0 75 to 1 25 on the controller The ratio factor v bei xd 0 is determined partly by the transmission factors K of the trans mitter mea...

Page 69: ...tio factor v and air factor λ to standardized nominal ratio wv If the combustion is also to take place at small flow volumes with excess air the constant c must be set negative Figure 1 35 shows the gas air ratio in the controlled state at different air factors λ and c 0 as well as at λ 1 and c 0 i e with excess air 1 constant gas air ratio 2 gas air ratio with additional air excess mA Gas m3 h V ...

Page 70: ...101 2 3 0 1 S53 0 1 4 5 tS tS v vA to vE v wv vE vA vA When adjusting wvi the setpoint ramp is not active Factory setting 1 wi1 2 3 4 5 0 1 S101 x1 x2 FE3 FE2 FE1 SES Adaptation tF I w x Int Int 1 A A CB CB 1 wv E wv E Δ wv ES wv EA wv ES wvi ES A H N Si H Hi He Δw Δw wv E see fig 1 5 page24 see fig 1 50 page 90 0000 d I I 0000 d I II 0000 d I W SL I I II 0000 S236 0 2 I II 0000 x S236 1 2 w v act...

Page 71: ... 1 5 4 7 S1 5 Cascade control x x1 c1 x2 c3 y H y P I D wi I tS tS wiII II II II FE1 FE2 FE3 FE4 SES I I wI xI 0000 0000 wI wII xII 0000 0000 wII w E Δ P I D 000 xI wI INTI yII w E I wII wIΙ xIΙ Δw yaI c6 z yaI wI xII x1II x2II xI z FE8 SLAVE CONTROLLER CONTROLLER I MASTER CONTROLLER CONTROLLER II w SL II INTII CB w SL II Figure 1 37 Principle representation S1 5 ...

Page 72: ...ow up of the inactive setpoint to the active setpoint can be switched off with S52 1 Follow up controller controller I The follow up controller can be switched for disconnecting the cascade for startup proce dures via the Internal External key 2 Int I between the internal setpoint wiI and the exter nal setpoint wEI which is equal to the manipulated variable of the master controller yaII The intern...

Page 73: ...s displayed by the Internal LED is not identical with that in the selected controller Normally the display level switch will be in the position Controller II master controller so that the main controller variable xII can be monitored The display level I is only used for startup procedures The Automatic Manual switch for the slave controller is possible in both display levels depending on the selec...

Page 74: ...fter w E Δ if IntII 0 and CB go from 1 to 0 computer failure If CB 0 and Int is switched from 1 to 0 wiIΙ is still active Since SH is not followed up you can switch to SH with the setpoint ramp tS 4 By OR linking with the digital outputs H N IntI and the control signal Si no computer standby or computer operation can be signaled at disconnected cascade 5 When selecting controller I is C LED 0 6 Ma...

Page 75: ...2II c3 c 1 c 3 wiII A IntI IntII d II A IntI wII wII d II II 0000 I 0000 PID controller II xII wII xII wiII ES w ES xdII wiI IntII 1 IntI IntI 1 CB CB w E II w SL II xII I 0000 A H N Si H Hi He wI A A wI xI yaII w E I Controller II see Fig 1 51 page 91 Control parameter II vv cP tn Y o tv AH YA YE II 0000 xII wiI Follow up controller Master controller Factory setting c1 c3 0 S50 xdI xI Adap tation...

Page 76: ... cascade control y H y P I D x I w I xv wv wi I w I x I P I D x II w II w II tS tS wiII xII x2I x1I z w Δ l FE1 FE2 FE3 FE4 SES I I yaI c6 z 0000 0000 Follow up controller Controller I Master controller Controller II wII xII wII 0000 0000 w ES IntII CB w SL II w E Δ FE8 000 IntI v is x1I c5 x2I wI v x2 c5 v vA to vE v wv vA vE vA yaI w SL II Figure 1 39 Principle representation S1 6 ...

Page 77: ...witched to the internal setpoint x tracking in A operation is possible by selec tion with S50 1 The follow up of the inactive setpoint to the active setpoint can be switched off by S52 1 Follow up controller The follow up controller is a ratio controller as described under S1 4 To disconnect the cascade the Internal External key 2 Int I can be used to switch between the internal ratio factor wvi a...

Page 78: ...IntI SA SE x1I x2I xII xII wII xII xdII xII PID controller II wvi ES wII wvi 4 5 A v is x1I c5 x2I wI v x2 c5 xdI xI Adaptation Factory setting vA 0 vE 1 c5 0 v vA to vE v wv vE vA vA wI xI xv v ist vA vE vA x2I x1I IntI IntI 1 A H N Si H Hi He SES Controller II see Fig 1 51 page 91 Control parameter II vv cP tn Y o tv AH YA YE d II II 0000 I 0000 d I II 0000 d I xv wv vA vE c5 wI II 0000 d II see...

Page 79: ...e limiting related to the setpoint set or active in both controllers One of the two controllers preferably the main controller is always intervening and controls the process The non intervening controller then has a control difference which controls it to the limited manipulated variable In this case all further integration is prevented so that no integral saturation takes place Disconnection alwa...

Page 80: ...tion the main controller can set its manipulated variable totally independently of the limiting controller and control the core temperature of the reactor xcore Sb wcase xcase YE Core temperature controller Main controller Casing temperature controller Limiting controller wcore y S1 8 YE Controller II Controller I Figure 1 42 Core temperature control with max casing temperature limiting If the cas...

Page 81: ...fect normal Kp or reversed Kp the limiting direction of the controlled variables is reversed Minimum or Maximum value limits S1 Manipu lated variable corres ponds to y Controller direction of effect Disconnection at Limiting of the controlled variables to S1 variable limiting direction to y selec tion Main control ler I Limit ing control ler II Main controller I Limiting controller II xI xII 7 yA ...

Page 82: ...ring mode oFPA in the range from 10 to 110 related to the display range dEII dAII 100 Display and operating level switching The display and operating level switching Controller I or Controller II takes place in all oper ating modes with the Shift key 12 The LEDs Controller I Controller II signal which control ler is displayed and which controller is intervening The digital and analog x and w displ...

Page 83: ...al x and w display for both controllers with the parameters d I and d II if necessary in connection with the linearizers so that both controllers can be displayed correctly Automatic Manual switching Since both controllers only generate one common automatic manipulated variable ya the Automatic Manual switching of both controllers is also common In manual follow up safety or blocking operation bot...

Page 84: ... z 0 1 S52 wiI SES FE4 tS S101 2 3 0 1 4 5 2 3 4 5 S101 0 1 xI c1 c3 Δw Δw PID controller II see chapter 1 5 5 Figure 1 51 Page 91 II 0000 d II yn ya yE yA PID controller I see chapter 1 5 5 Figure 1 50 Page 90 yn ya yE yA yn ya A H N Si H Hi He xI z wII wII II 0000 d II xII I 0000 d I see fig 1 5 page 24 Controller I see figure 1 50 page 90 xd II xII tFII A A Int Int 1 CB CB 1 S50 1 Factory setti...

Page 85: ... digital and analog displays are connected in parallel With the parameters d I and d II if necessary in con nection with the linearizers both process variables can be displayed separately physically cor rectly The switching possibility of the display level is disabled The LEDs Controller I Controller II are dark The process variable xIII is indicated by the y display and can be switched off by the...

Page 86: ...A A I 0000 d I d I d I wI c8 wST c9 w wI1 c8 wST c9 FE11 wST w II 0000 d I xI I 0000 n o see Fig 1 50 page 90 Figure 1 45 Block diagram S1 10 fixed setpoint controller for control system coupling This fixed setpoint controller is designed specially for coupling to the control system The control interventions by the signals Int and CB which cannot be used otherwise in this con troller type are avai...

Page 87: ...l system operation via the SES With Int CB the manual intervention via HeES at S64 3 is suppressed S64 3 is expressly recommended for this connection Disconnection of a cascade control is made by manual manipulation at the master controller The other functions are unchanged in relation to S1 3 Adaptation tF I x x1 c1 x2 c3 x1 x2 FE3 FE1 FE2 c1 c3 c4 c5 Factory setting c4 1 c5 0 0 1 S53 tS w c5 c4 ...

Page 88: ...ed setpoint follow up controller function are available With the Shift key the operating and display levels are switched completely between the two controllers ya c6 z P I D z FE4 xI FE1 tS yH FE2 SES wiI wiI INT CB I wEI wEAI x xI wI yI w x 0000 0000 000 wSLI ya c7 z P I D z FE7 xII FE3 tS yH FE8 SES wiII wiII INT CB II wEII wEAII x xII wII yII w x 0000 0000 000 Controller 1 Controller 2 wSLI wSL...

Page 89: ...R22 6DR2210 C79000 G7476 C154 03 87 0 1 S52 2 3 S101 4 5 xdI xI w x I 0000 dI w tS SA SE x w I 0000 d I x A A SES wiI ES S50 1 0 Int Int wiI CB CB 1 S51 0 1 w ES w SL I w E 0 1 w EA Adaptation tF I FE2 FE1 see fig 1 5 page 24 see fig 1 50 page 90 wiI A H N Si H Hi He x w es I w SL I Figure 1 48 Block diagram controller I at S1 12 ...

Page 90: ...4 03 0 1 S235 2 3 S101 4 5 xdII xII wII II 0000 w xII wII I 0000 dII xII AII AII SES wiII ES S233 1 0 IntII IntII wiII CBII CBII 1 S234 0 1 w ES II w SL II w E II 0 1 w EA II Adaptation tF I FE8 FE3 wiII wiII xII wII A HII NII SiII HII HiII HeII see fig 1 5 page 24 see fig 1 50 page 90 SAII SEII tSII dII w SL II Figure 1 49 Block diagram controller II at S1 12 ...

Page 91: ...ler I and II is implemented as an interaction free parallel structure and follows the ideal controller equations whilst neglecting the filter constants and the cycle time P controller ya Kp xd yo or ya xd Kp Pi controller ya Kp xd xd dt yo t o r Kp 1 1 Tn t 0 ya xd 1 jω Tn D part zD part The D part can be added optionally ya E Tv vv Kp jω Tv 1 jω The input variable E for the D part is xd x z or z ...

Page 92: ...1 d p i n Pi P tn I P S54 0 1 1 0 1 S54 Kp I c6 vv I tv I tF I 2 3 0 1 zy S55 z 0 1 2 3 0 2 At S55 2 3 zy 0 S55 Controller structure I FE4 xdI see fig 1 25 page 50 to fig 1 49 page 88 y n y a I YAI YEI PII see chapter 1 5 3 figure 1 17 page 38 1 1 1 xI y o y n Kp xd c6 zy y o y n p y o I c6 zy zΔ see fig 1 58 page 102 to fig 1 63 page 110 Figure 1 50 Block diagram controller structure I ...

Page 93: ...0 1 S56 Kp II vv II tv II 2 3 0 1 S57 z 0 1 2 3 0 2 At S57 2 3 zy 0 S57 Controller structure II FE7 xdII y n y a II YAII YEII PII see figure 1 17 1 1 1 xII y o y n II kp xd c7 zy y o y n II p y o II c7 zyII tnII tFII AHII KpII c7 zΔ P zyII see fig 1 25 page 50 to fig 1 49 page 88 see fig 1 64 page 115 to fig 1 68 page 119 or Fig 1 38 page 73 and fig 1 40 page 76 Figure 1 51 Block diagram controlle...

Page 94: ...l follow up safety or blocking operation the operating point yo is followed up so that switching to automatic operation is bumpless This gives an automatic setting of the operating point yo in manual mode yo yH Kp w xH c6 zyII in controller II or yo yH Kp w xH c6 zy in controller I If the actual value in manual mode xH is driven to the desired setpoint w by the appropri ate manual manipulated vari...

Page 95: ...ariable is transfered bumplessly then only changes in the manipulated variable in direction of the range YA to YE are executed In controller I the manipulated variable limiting is only possible in K controllers and three position step controllers with external position feedback S2 0 and S2 3 Adaptive filter The control difference xd is fed through an adaptive filter By adjusting tFI or tFII onPA f...

Page 96: ...s i e fixed setpoint controllers with two independent setpoints fixed set point controllers with two dependent setpoints DDC fixed setpoint controllers follow up controllers synchronized controllers SPC controllers and ratio controllers operate with the parameter set I and can be switched via the control signal PAU 1 to the parameter set II Both parameter sets are separately adjustable in the para...

Page 97: ...g tv a supplementary condition must be satisfied tv 1 to tv 9 must either be all oFF Pi or P controller or all oFF PID or PD controller Otherwise the error message tv Err appears when jumping out of the structuring mode PAST with the Exit key see chapter 3 3 3 page 175 Yo is controllable in the range from 0 to 100 and then acts like a fixed set operating point Yo Auto can also be set in this case ...

Page 98: ...parameter control In the parameterization mode AdAP which is only accessible at S58 0 the following preset tings are made for the adaptation procedure tU Monitoring time dPv Direction of step command dY Amplitude of step command With the structure switch S58 the choice of the control behavior with or without overshoot is made The adaptation principle is divided into line identification and control...

Page 99: ... the controlled system with safety reserve The remaining time is required for the full scale identification The full scale identification can also take place immediately after the start identification but 1 3 of the performed measurements are always required for the full scale identification Recording of the measured value pairs is ended on identifying the full scale A comparison with the recorded...

Page 100: ...gement of the error messages see table 3 2 Error messages of the adaptation procedure page 177 Controller design The controller is designed according to the amount optimum method S58 2 This setting method is very robust and also allows variation of the line amplification However it gener ates an overshoot of approx 5 in the event of changes in the command variables If this is not wanted you can al...

Page 101: ...anged and accepted optionally The operating technique of the adaptation procedure is described in chapter 3 3 3 page 175 the commissioning explained in chapter 4 5 page 220 1 5 6 Controller output structures S2 S61 to S68 Three different controller output structures are connected after the controller I depending on the structrue switch S2 S2 0 K controller S2 1 S controller with internal feedback ...

Page 102: ...etween cooling end and heating start to save energy Depending on the design of the cooling and heating aggregate related to the control range of the controlled variable the different line gains can be compensated by different slope settings and good control results achieved in both branches As a rule the cooling aggregate is underdimensioned for cost reasons so that the slope of Y2 needs to be gre...

Page 103: ... is made for the outputs y1 and y2 by an ID I and II Therefore only 2 positions are available for displaying the respective manipulated variable value so that values above 100 are identified by h The output y1 is displayed until the output Y2 has reached a value 0 Floating time tY At S62 0 absolute value preset of YN the positioning speed of the automatic variable is set with tY In the oFF positio...

Page 104: ...y2 y S68 S67 1 2 1 0 Y2 Y1 YE PID 1 2 S64 3 4 0 A H y H ya yS y ES y ES y E y N Δ y N N DDC 1 0 S66 DDC y R FE6 yBL y N FE5 yBL Δy Δy yH ES y H 0 1 2 3 4 5 S101 see chapter 1 5 7 figure 1 69 page 120 see chapter 1 5 1 fig 1 5 page 24 and chapter 1 5 2 fig 1 6 page 26 see chapter 1 5 3 pg Fig 1 17 page 38 see chapter 1 5 1 figure 1 5 page 24 see chapter 1 5 3 Fig 1 17 page 38 Figure 1 58 Block diag...

Page 105: ...S68 S67 1 2 1 0 Y2 Y1 PID 1 0 S66 DDC y R FE6 yBL y N FE5 yBL Δy Δy A N DDC ya y E y N 1 0 y N Δ 0 1 2 3 S62 S101 y ES y ES 1 2 S64 y H y H tY 0 3 4 H y H Si yS ty SES yH ES S101 0 1 2 3 4 5 tY YA YE 4 5 see chapter 1 5 1 figure 1 5 page 24 see chapter 1 5 3 Fig 1 17 page 38 see chapter 1 5 3 Fig 1 17 page 38 see chapter 1 5 1 fig 1 5 page 24 and chapter 1 5 2 fig 1 6 page 26 Figure 1 59 Block dia...

Page 106: ...nd an absolute value preset of yE and ys The safety manipulated variable ys is preset as a direction dependent continuous contact At YS 50 oFPA Δy switches at YS 50 Δy switches to continuous contact so that the end positions represent the safety position The position controller has an adjustable minimum pulse length tE and pause tA with which the response threshold of the position controller is se...

Page 107: ... 5 8 Fig 1 70 page 122 internal position control circuit 1 oFF 2 0 S67 0 1 S68 000 y y y H y H Controller I Δy Δy 1 2 S64 A H ya N DDC 0 PID y N y H y N Δ 0 100 YS 50 YS 50 see chapter 1 5 3 Fig 1 17 page 38 FE6 y R YS YS Si see chapter 1 5 3 Fig 1 17 page 38 see chapter 1 5 1 fig 1 5 page 24 and chapter 1 5 2 fig 1 6 page 26 Figure 1 60 Block diagram S controller with internal feedback S2 1 Follo...

Page 108: ...l position control circuit 1 oFF 2 0 S67 0 1 S68 000 y y y H y H Controller I Δy Δy A H ya N DDC PID y N y H y N Δ 0 100 YS 50 YS 50 FE6 y R 1 2 S64 0 Si see chapter 1 5 8 Fig 1 70 page 122 see chapter 1 5 3 Fig 1 17 page 38 see chapter 1 5 3 Fig 1 17 page 38 see chapter 1 5 1 fig 1 5 page 24 and chapter 1 5 2 fig 1 6 page 26 Figure 1 61 Block diagram S controller with internal feedback S2 1 Manua...

Page 109: ... control deviation of xds Aee is set up the three position switch switches direction depen dently to continuous contact xds is reduced by the negative follow up of the position control circuit until xds Aea is reached The continuous contact is now switched off After the pause time tA pulse of length tE are output with subsequent pause time tA until xds Aee is reached Aea Aee Aea Aee Δy Δy xdS Thes...

Page 110: ... C154 03 manipulated variable which is also displayed is changed faster by the floating time than the active manipulated variable on the actuator and a lag therefore takes place The controlling status can be monitored on the Δy LEDs 15 in the y display After optimization S67 should be set to 2 to display the active manipulated variable via the position feedback yR FE6 ...

Page 111: ... y ES y E y N Δ y N N DDC y N FE5 Δy Δy yH ES y H BA7 BA8 yBL yBL α E Δy Δy y FE6 y R 2 3 4 5 S101 y H y N y H y 1 oFF 2 0 S67 0 1 S68 000 y y xds tY YA YE 0 external position control circuit see fig 1 69 page 120 see Fig 1 70 page122 see fig 1 17 page 38 see figure 1 5 Page 24 Controller I see Figure 1 17 Page 38 see Figure 1 5 Page 24 Figure 1 62 Block diagram S controller with external feedback...

Page 112: ...ES y ES 1 2 S64 y H y H tY 3 4 H y H Si yS ty SES yH ES S101 0 1 2 3 4 5 tY YA YE 4 5 BA7 BA8 yBL yBL α E Δy Δy y FE6 y R y 1 oFF 2 0 S67 000 y tY YA YE y xds yS 1 0 S68 Controller I external position control circuit see fig 1 70 page122 see figure 1 17 Page38 see Figure 1 17 Page 38 see Figure 1 5 Page 24 see Fig 1 69 page 120 0 Figure 1 63 Block diagram S controller with external feedback S2 2 M...

Page 113: ... 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 95 1 1 0 0 0 0 0 1 1 1 0 0 0 0 ya n yH n yH n yH n Automatic mode Manual mode Manual mode Manual mode 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0 95 1 1 1 0 5 0 56 0 5 0 1 1 1 1 1 1 1 yE n 2 yH n yH n yH n Follow up operation Manual mode Manual mode Manual mode 1 1 0 0 1 1 as above 1 1 1 as above yBL 3 yBL 3 yS 4 Blocking mode Blocking mode Safety operati...

Page 114: ... by the control signals Δy yNΔ S62 1 The incremental adjustment runs at the adjustment speed 100 tY With S101 2 the absolute value becomes active as an external manipulated vari able via the SES yES In S controllers with internal feedback S2 1 absolute value pre sets of the manipulated variable are not possible only the external manipulated variable with incremental adjustment yNΔ is available Saf...

Page 115: ...2 with the parameterized YS In both cases the manual manipulated variable can be adjusted with the Δy keys after switching Source and direction of effect of the y display S67 S68 With S67 the y display is switched to the different display sources or switched off The absolute manipulated variable y or the split range manipulated variables y1 and y2 can be displayed in K controllers or the position ...

Page 116: ...ace via the front If the last operation took place via the SES the warning SES flashes for 3 s in the x w display when the Internal key or the Manual key is pressed This initial pressing of the keys does not activate a switching function only when the keys are pressed again is the desired switching function triggered Output structure controller II at S1 12 With S1 12 a second parallel independent ...

Page 117: ...115 2 3 0 1 4 5 0 1 SES PID 1 2 S240 3 4 0 AII HII ySII yII ES y E II NII y N II FE9 yIIH ES y H yBLII yBLII 2 3 4 5 S101 y H II y N II tYII YAII YEII SiII 0 1 OFF 2 1 0 S101 S242 1 0 y3 y4 y4 000 y S243 S244 f y3 y4 S241 yII y3 y4 y R II FE10 tyII NII Controller II only S1 12 Figure 1 64 Block diagram K controller S231 0 Follow up has priority over manual operation S238 0 ...

Page 118: ... G7476 C154 03 0 1 ty SES PID 1 2 S240 3 4 0 A ySII yII ES y N II FE9 yIIH E S y H yBLII yBLII 2 3 4 5 S101 tYII YAII YEII SiII 0 1 OFF 2 1 0 S242 1 0 y4 y4 000 y S243 S244 f y3 y4 S241 yII y3 y4 y R II FE10 NII 2 3 0 1 4 5 H y3 1 0 NII S101 Controller II only S1 12 Figure 1 65 Block diagram K controller S231 0 Manual operation has priority over follow up S238 1 ...

Page 119: ...ART DR22 6DR2210 C79000 G7476 C154 03 117 0 100 y Syn BA5 BA6 yBLII yBLII tY α E Δy Δy internal position control circuit 1 oFF 2 0 S243 0 1 S244 000 y y y H Controller II 1 2 S240 AII HII 0 PID 0 100 YSII 50 YSII 50 FE10 y R II YSII YSII SiII tYII tAII tEII only S1 12 Figure 1 66 Block diagram S controller with internal feedback S231 1 ...

Page 120: ... C154 03 Controller II PID y N II FE9 A NII 2 3 S101 yII ES 1 2 S240 y H 0 3 4 H SES yII HES S101 0 1 2 3 4 5 4 5 BA5 BA6 yBLII yBLII α E Δy Δy y FE10 y R II 1 oFF 2 0 S243 000 y external position control circuit y tYII tAII tEII YAII YEII 0 1 YS YSII yII SiII tYII 1 0 S244 only S1 12 Figure 1 67 Block diagram S231 2 Manual operation has priority over follow up S238 0 ...

Page 121: ...SES Controller II PID 1 2 S240 3 4 0 A H ya YSII yII ES y ES y E y N NII y N II FE9 yII HES y H BA5 BA6 yBLII yBLII α E Δy Δy y FE10 y R II 2 3 4 5 S101 y H y N y H 1 oFF 2 0 S243 0 1 S244 000 y external position control circuit y tYII tAII tEII YAII YEII yII SiII tYII only S1 12 Figure 1 68 Block diagram S controller with external feedback S231 2 Follow up has priority over manual operation S238 ...

Page 122: ...an offset of 50 and optionally reversed direction U I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 U I S73 S74 U I S69 S70 4 to 20 mA 1 0 1 0 4 to 20 mA U I S71 1 0 4 to 20 mA S75 1 12 1 13 1 14 S252 U I U I S72 S247 4 to 20 mA 1 0 1 0 4 to 20 mA U I S248 1 0 4 to 20 mA 6 4 6 5 6 6 Slot 6 6DR2802 8B S23 6 Slot 6 6DR2802 8A S23 4...

Page 123: ...sing 4BA 24 V 2BE in slot 5 by BA9 to BA12 in slot 6 by BA13 to BA16 When using 2BA relay 35 V in slot 5 by BA9 and BA10 in slot 6 by BA13 and 14 When using option modules in the slots 5 and 6 the structure switches S22 and S23 are set according to the assembly other settings lead to error messages see chapter 1 4 3 page 20 The control signals Δy positioning increments of the S controller are not ...

Page 124: ...0 1 S262 8 5 V 24 V I Slot 5 BA9 BA10 BA11 BA12 4BA 2BE S22 11 FE9 50 S263 FE10 50 S264 FE11 50 S265 FE12 50 S266 9 10 11 12 13 14 15 16 S2 0 1 11 S2 0 1 10 S231 0 1 9 S231 0 1 8 S86 1 0 Assignment with S76 1 0 S 1 2 3 4 5 6 7 S78 S77 S87 1 0 1 S88 1 0 1 RC Int CB BA1 BA2 BA3 BA4 1 4 1 5 1 6 1 7 5 V 24 V I H ΔyII ΔyII Δy BA5 BA6 BA7 BA8 S79 NO assignment BAs 02 S80 S81 S82 1 S83 S84 S93 S85 RBII S...

Page 125: ... of the controller Hi or by the binary signal He if the control signals Si yBL and N with follow up over manual operation priority are Low N Follow up mode The controller is in follow up mode when the control signals Si yBL and H in manual over follow up operation priority are Low A1 A2 Alarm 1 and 2 indicate response of the limit value alarms A1 and A2 A3 A4 Alarm 3 and 4 indicates response of th...

Page 126: ...ase the switching cycle of the Shift key 12 is extended by the response thresholds A1 to A4 displayed on the y display 14 Controller I Controller II A1 A2 A3 A4 Controller I The response thresholds are set depending on the assignment physically corresponding to the display format of the digital x or w display see chapter 1 5 4 page 40 or in S1 S94 S95 S267 S268 assigned to Display format Parameter...

Page 127: ...1 32 33 34 35 36 37 38 39 S94 S xdI xI wI xv wv xdII xII wII y y1 y2 AE1A AE2A AE3A AE4A AE5A FE1 FE2 FE3 FE4 FE5 FE6 xds yII y3 y4 AE6A AE7A AE8A AE9A AEAA AEbA FE7 FE8 FE9 FE10 FE11 FE12 xdI xdII Assignment with S267 A1 Min Max S96 0 H1 2 A1 A2 Min Max S96 0 H1 2 A2 H2 at S267 1 S95 S268 A3 Min Max S97 0 H2 3 A3 A4 Min Max S97 0 H2 3 A4 H4 at S268 1 S268 S267 1 1 1 2 3 0 1 2 3 0 3 0 2 1 1 1 3 0 ...

Page 128: ...e optical signaling of mains voltage recovery and reset is determined by flashing of the digital x display The flashing is acknowledged by pressing the Shift key 12 or by an alarm request via SES 1 5 11 Serial interface and PROFIBUS DP S101 to S107 With S101 the depth of the SES interventions is preset Generally all available set data can be read In position 0 no transmission and reception of data...

Page 129: ...nals Air and creep lines unless specified otherwise for overvoltage class III and degree of contamination 2 D EC declaration of conformity number 691 001 D CE mark conformity regarding EMC regulation 89 336 EWG and LV regulation 73 23 EWG D Spurious emission interference immunity according to EN 61 326 NAMUR NE21 8 98 Weight max assembled approx 1 2 kg Color Front module frame RAL 7037 Front surfa...

Page 130: ...4 130 1 Installation depth required to change the mainboard 4351 223 Figure 1 72 Dimensions SIPART DR22 dimensions in mm 138 1 68 0 7 72 5 1 b 145 1 1 Installation close one above the other is allowed when the permissible ambient temperature is observed Nr of controllers Cut out width b 2 140 1 3 212 1 4 284 1 10 716 1 Figure 1 73 Panel cut outs dimensions in mm ...

Page 131: ...ons without IExt active power apparent power capacitive Standard controller with options with IExt active power apparent power capacitive 8 W 17 VA 13 W 25 VA 26 W 45 VA 8 W 13 VA 13 W 20 VA 26 W 36 VA 8 W 11 VA 13 W 18 VA 28 W 35 VA 8 W 13 W 28 W Permissible voltage interruptions3 Standard controller without options without IExt Standard controller with options without IExt Standard controller wi...

Page 132: ...inearization error see AD converter Common mode error 0 07 V Temperature influence Zero point Full scale 0 05 10 K 0 1 10 K Static destruction limit 35 V Current Rated signal range 0 4 to 20 mA Modulation range 1 to 21 mA Input resistance Difference load Common mode 49 9 Ω 0 1 500 kΩ Common mode voltage 0 to 10 V Filter time constant 50 ms Zero error see AD converter End value error see AD convert...

Page 133: ... Signal status 0 4 5 V or open Signal status 1 13 V Input resistance 27 kΩ Static destruction limit 35 V Binary outputs BA1 to BA8 with wired or diodes Signal status 0 1 5 V Signal status 1 19 to 26 V Load current 50 mA Short circuit current 80 mA clocking Static destruction limit 1 to 35 V Cycle time adaptive 60 ms to 120 ms typical 80 ms A D conversion Procedure Successive approximation per inpu...

Page 134: ...hnique x and w display digital 41 2digit 7 segment LED Color x w red green Digit height 7 mm Display range Adjustable start and end Number range 1999 to 19999 Overflow 1999 oFL 19999 oFL Decimal point adjustable fixed point _ to Refresh rate adjustable 0 080 to 8 000 s 1 Resolution 1 digit but better than AD converter Display error corresponding to AD converter and analog inputs x and w display an...

Page 135: ...A 1 20 mA 4 to 110 0 V or 2 V1 or 199 6 mV 1 10 V 998 mV 4 to 110 0 Ω ΔR 0 3 R 3 RA 0 2 R 3 RA 1 1 R 3 4 to 110 Input resistance Difference Common mode Permissible common mode voltage Supply current Line resistance Two wire circuit Three wire circuit Four wire circuit 49 9 Ω 0 1 500 kΩ 0 to 10 V 200 kΩ 200 kΩ 0 to 10 V 5 mA 5 per 10 Ω Filter time constant 20 50 ms 50 ms 50 ms Error 2 Zero point Ga...

Page 136: ...istance 2L RL1 RL4 1 kΩ 300 Ω 50 Ω 3L RL1 RL2 RL4 50 Ω 4L RL1 to RL4 100 Ω Open loop signaling without 500 to 550 Ω all terminals Open loop between terminal 2 3 Error Transmission 10 μV 10 μV 0 2 K 60 mΩ 200 mΩ Linearity 10 μV 10 μV 0 2 K 60 mΩ 200 mΩ Resolution noise 5 μV 2 μV 0 1 K 30 mΩ 70 mΩ Common mode 1 μV 10 V 1 μV 10 V Internal reference junction terminal 0 5 K Temperature error Transmissi...

Page 137: ... resistance 90 kΩ Statistical destruction limit 100 V 6DR2801 8D 2BO Relay 35 V Binary outputs BA9 and BA10 slot 5 or BA13 and BA14 slot 6 Contact material Ag Ni Contact load capacity Switching voltage AC DC 35 V 35 V Switching current AC DC 5 A 5 A Rating AC DC 150 VA 100 W for 24 V 80 W for 35 V Service life mechanical 2x107 switching cycles electrical 24 V 4 A ohmic 24 V 1 A inductive 2x106 swi...

Page 138: ...4 5 V or open Signal status 1 13 V Input resistance 2 4 kΩ Static destruction limit 35 V 6DR2801 8C 5BE 24 V Digital inputs BE5 to BE9 slot 5 BE10 to BE14 Slot 6 Signal status 0 4 5 V or open Signal status 1 13 V Input resistance 27 kΩ Statistical destruction limit 35 V 6DR2802 8A 1AA yhold Analog outputs AA4 Slot 6 AA7 Slot 5 Analog output AA4 AA7 Rated signal range 0 to 100 0 to 20 mA or 4 to 20...

Page 139: ...m controllers for supply by UH 6 mA 70 mA Static destruction limit 35 V 6DR2802 8B 3AA and 3BE Analog outputs AA7 bis AA9 digital inputs BE5 to BE7 slot 5 Analog outputs AA4 bis AA6 slot 6 digital inputs BE10 to BE12 slot 5 Analog outputs Rated signal range 0 to 100 0 to 20 mA or 4 mA to 20 mA Modulation range 0 to 20 5 mA or 3 8 mA to 20 5 mA Load voltage from 1 to 18 V No load voltage 26 V Induc...

Page 140: ...age 500 V AC Repeater control signal CNTR P TTL level with 1 TTL load Supply voltage VP 5 V 5 V 0 4 V 0 2 V short circuit proof Line lengths per segment at 1 5 Mbit s 200 m see ET200 Manual 6ES5 998 3ES12 for further details 6DR2803 8C Serial interface Transferable signals RS 232 RS 485 or SIPART BUS shunta ble SIPART bus operation no longer possible The bus driver is no longer offered Transferabl...

Page 141: ...iode greater voltages possible with current limiting to 50 mA Line capacitance or lengths at 9600 bits s Reference values line lengths Power capacitance Ribbon cable without shield Round cable with shield RS 232 point to point 2 5 nF 50 m 10 m RS 485 bus 250 nF 1000 m 1000 m 6DR2804 8A B Coupling relay 230 V 1 relay module 6DR2804 8B 2 relay module 6DR2804 8A per relay module 2 relays with 1 switc...

Page 142: ...ation by reinforced isolation air and creep lines for overvoltage class III and 6DR2804 8A degree of contamina tion 2 DIN EN 61010 Teil 1 contact contact of a relay module Safe isolation by reinforced insulation air and creep lines for overvoltage class II and degree of contamination 2 DIN EN 61010 Teil 1 Type of protection Casing IP50 according to DIN 40050 Connections in plugged state IP20 accor...

Page 143: ...3 Technical data of the options modules SIPART DR22 6DR2210 C79000 G7476 C154 03 141 3 2 1 8 7 NS 35 15 Center of the mounting rail 12 18 9 139 136 100 130 36 131 5 39 66 NS 32 NS 35 7 5 6 5 4 Figure 1 74 Dimensioned diagram coupling relay dimensions in mm ...

Page 144: ...Manual 1 Technical Description 1 6 Technical Data 1 6 3 Technical data of the options modules 142 SIPART DR22 6DR2210 C79000 G7476 C154 03 ...

Page 145: ...top of the SIPART DR22 If necessary Push self adhesive sealing ring for sealing front frame front panel over the tube and stick to the tube collar see chapter 5 2 page 231 item 2 6 Insert SIPART DR22 into the panel cut out or open tier from the front and fit the two clamps provided to the controller unit from the rear so that they snap into the cut outs in the casing Align SIPART DR22 and do not t...

Page 146: ...xists 30 Vrms or 42 4 V DC and current 8 A or source under all load conditions 150 VA or fuse element which responds at 150VA The circuit breaker can be omitted if the 24 V UC power supply is protected by 4 A 35 V DC T 3 15 A is required at least D Connection of measuring and signal lines The process signals are connected via plug in terminal blocks that can accommodate cables of up to 1 5 mm2 AWG...

Page 147: ... Main board AE1 to AE3 I U AA1 bis AA3 BE1 to BE4 BA1 to BA8 24 V L M 2 Slot 2 AE4 I U R P T V 3 Slot 3 AE5 I U R P T V 4 Slot 4 Serial interface 5 Slot 5 4BA 24 V 2BE BA9 to BA12 BE5 to BE6 2BA relay BA9 BA 10 5BE BE5 to BE9 1AA AA7 3AE AE9 to AE11 3AA 3BA AA7 to AA9 BE5 to BE7 6 Slot 6 4BA 24 V 2BE BA13 to BA16 BE10 to BE11 2BA relay BA13 BA14 5BE BE10 to BE14 1AA y hold AA4 3AE AE6 to AE8 3AA 3...

Page 148: ...oth inputs and outputs all process signals are referred to this point The reference line is also connected to vacant terminal modules These may only be used if practically no current flows through this connection see e g fig 2 13 page 151 I 4L The power supply connection is electrically isolated from the process signals In systems with unmeshed control circuits the SIPART DR22s need not be interco...

Page 149: ...2210 5 115 230 V AC switchable Three pin plug IEC 320 IV DIN 49457A 1 A slow blow per controller L N PE 230 115 24 V 5 V UREF other loads on the same signal loop use larger fuse if necessary Alternative DR 22 6DR2210 5 115 or 230 V AC L N PE Figure 2 3 Connection 115 230 V AC power supply 6DR2210 4 24V UC Special 2 pin plug any polarity other loads on the same signal loop use larger fuse if necess...

Page 150: ... I U Other connection possibilities see chapter 2 2 3 page 158 Set the analog inputs AE1 to AE3 to 0 or 4 mA with the stucture switches S5 to S7 AE AE M AE AE M I M M 1 24 1 23 AE3 1 potential load impedance from additional instruments Figure 2 5 Connections AE1 to AE3 U or I Jumper settings AE3 AE2 AE1 1V 10V factory setting I 0 to 20 mA Main board C73451 A3001 L32 1V 10V I I 1V 10V I Figure 2 6 ...

Page 151: ...1 1 19 V 50 mA BE1 BE2 BE3 BE4 L M If S controllers are CSi structured the Δy outputs of the S controllers are permanently assigned to the digital outputs BA Arithmetic block Δy terminal Δy terminal S1 12 and S231 0 BA5 1 8 BA6 1 9 S2 0 BA7 1 10 BA8 1 11 D AA1 to AA3 900 Ω Figure 2 9 AA1 to AA3 connection diagram 0 4 20 mA 1 12 1 13 1 14 Set the analog outputs AA1 to AA3 to 0 or 4 mA with the stru...

Page 152: ...S set S23 5 Wiring 24 V L M U 49 9 Ω 49 9 Ω 49 9 Ω 1 V UH I I 2L UH I I 4L U 6DR2800 8A I I 10 V 1 V 10 V 1 V 10 V 1 3 6 6 AE8 6 5 AE8 6 4 AE7 6 3 AE7 6 2 AE6 6 1 AE6 1 1 1 3 5 6 AE11 5 5 AE11 5 4 AE10 5 3 AE10 5 2 AE9 5 1 AE9 1 1 Figure 2 11 Connection of 3AE module 6DR2800 8A Jumper settings AE7 AE1 0 6DR2800 8A factory setting I 0 to 20 mA AE8 AE1 1 V 10 V I 1 V 10 V I 1 V 10 V I AE6 AE9 Figure...

Page 153: ...L I 4L 4 L 1 V 10 V x6 M x4 x5 1 1 UH U 0 2 10 V 0 0 2 1 V x5 x6 10 V x4 x5 1 V I 0 4 20 mA x4 x5 1 V 0 500 Ω 1 I 49 9 Ω U 6DR2800 8J 2 4 1 1 4 1 1 3 1 2 1 3 1 potential load impedance from additional instruments factory setting 1 V x4 x5 and x7 x8 Further connection possibilities see chapter 2 2 3 page 158 Figure 2 13 Connection U I module 6DR2800 8J Ranges 0 to 1 V 10 V 20 mA or 0 2 V 2 V 4 mA t...

Page 154: ... kΩ 2 RP 3 UREF 1 2 3 4 20mA 1kΩ500Ω200Ω 49 9 243 332 5 mA Is IK R 0 24 V S1 1 4 4 UH I M 6DR2800 8R for potentiometer with Is 5 mA or Is 5 mA R 1 kΩ I R 2 or 3 factory setting S1 200 Ω S1 20 mA RP R 200 Ω R 200 Ω Figure 2 14 Connection of R module 6DR2800 8R Calibration 1 Set sliding switch S1 according to the measuring range 2 Set RA using 0 Set display or analog output depending on the configur...

Page 155: ...V transmitter Direct input Umax 175 mV RL4 RL1 RL1 RL4 1 kΩ mV Block diagram of mV module 6DR2800 8V im U REF A D Sensor 6DR2800 8V 4 3 2 1 Figure 2 15 Connection of UNI module Pin assignment measuring range for TC internal connector 6DR2805 8J for U or I 4 3 2 1 89k1 200R 8k95 50R 1k 10 V SMART 20 mA perm common mode voltage 50 V UC UH Measuring range for TC internal connector 6DR2805 8J Block di...

Page 156: ...erminal 6DR2805 8A Internal reference junction terminal RL4 RL1 Tb External reference junction terminal Block diagram of mV module 6DR2800 8V Figure 2 17 Connection of thermocouple TC Pin assignment for Pt100 sensor RTD RL per 100 Ω RL4 Pt100 4 wire RL1 2 wire RL4 Pt100 RL1 RL2 3 wire RL4 Pt100 RL1 RL2 RL3 RL1 RL2 RL4 50 Ω RL1 RL4 50 Ω Block diagram of mV module 6DR2800 8V im U REF A D Sensor 6DR2...

Page 157: ...s jumper impedance only necessary if 2 8 kΩ R 5 kΩ RS Rp RS Rp 2 8 k Rp 5 KΩ not recommended im U REF A D Sensor 6DR2800 8V 4 3 2 1 4 3 2 1 Figure 2 19 Connection of UNI module D 6DR2801 8D 2BA relay 35 V BA9 and BA10 in slot 5 in StrS set S22 3 BA13 and BA14 in slot 6 in StrS set S23 3 6DR2801 8D 22R 1μ 1μ 22R K1 K2 K2 K1 5 5 5 4 5 6 5 3 5 2 5 1 BA10 BA9 6 5 6 4 6 6 6 3 6 2 6 1 BA14 BA13 AC 35 5 ...

Page 158: ...23 1 6 6 BE11 5 5 BA12 5 4 BA11 5 3 BA10 5 2 BA9 6 5 BA16 6 4 BA15 6 3 BA14 6 2 BA13 5V 24V I 6DR2801 8E 19 V 30 mA 5V 24V 5 6 BE6 6 1 BE10 5 1 BE5 Figure 2 21 Connection of 4BA 24 V module 6DR2801 8E D 6DR2801 8C 5BE BE5 to BE9 in slot 5 in StrS set S22 1 BE10 to BE14 in slot 6 in StrS set S23 1 1 1 L 1 3 M 4 5 V 13 V or 5 5 BE9 5 4 BE8 5 3 BE7 5 2 BE6 5 1 BE5 6 5 BE14 6 4 BE13 6 3 BE12 6 2 BE11 ...

Page 159: ... connected if the output current is to be maintained even in the event of a power failure in the controller or when removing the module for service work 2 depending on the supply up to 900 Ω possible see chapter 1 6 3 page 133 Figure 2 23 Connection of yhold module 6DR2802 8A D 6DR2802 8B 3AA 3BE AA7 to AA9 and BE5 to BE7 in StrS set S22 6 AA4 to AA6 and BE10 to BE12 in StrS set S23 6 6 5 AA5 5 6 ...

Page 160: ... in addition to the terminals 7 1 to 7 8 Attention Observe the max switching voltage excessive increases in resonance in phase shift motors see chapter 1 4 2 page 13 AC 250 8 1 250 V A VA DC 250 8 30 100 V A W at 250 V W at 24 V 2 2 3 Alternative connection for I and U input D 0 4 to 20 mA signals The 49 9 Ω input impedance is connected across the input signals AE and AE AE1 to AE3 in the standard...

Page 161: ... AE1 to AE3 of the standard controller internal or external 49 9 Ω resistance or signal input AE6 to AE8 via module 3AE 6DR2800 8A AE AE AE 20 mA 20 mA 1 V 10 V optionally 6DR2800 8J set 1 V jumper AE 49 9 Ω 49 9 Ω Figure 2 27 Signal input AE4 AE5 via option module 6DR2800 8J internal or external 49 9 Ω resistance I 0 4 to 20 mA UH AE AE M 49 9 Ω Figure 2 28 Connection of a 0 4 to 20 mA transmitte...

Page 162: ...20 mA UH AE AE M Figure 2 29 Connection of a 0 4 to 20 mA transmitter with negative polarity to ground I 0 4 to 20 mA UH 49 9 Ω AE AE M Figure 2 30 Connection of a 0 4 to 20 mA 3 wire transmitter 0 4 to 20 mA with positive polarity to ground I 4 to 20 mA 49 9 Ω AE AE M L Figure 2 31 Connection of a 4 to 20 mA 2 wire transmitter supplied from controller s L ...

Page 163: ...tial voltage of 0 2 to 1 V Instrument 1 also has a 0 2 to 1 V common mode voltage that is suppressed in this case Several instruments with a total common mode voltage of up to 10 V can be connected in series As the last instrument s input is connected to ground its input impedance is referred to ground As there will be an increased impedance maximum permissible common mode voltage 10 V the permiss...

Page 164: ...tted when connected for 1 V AE AE M Figure 2 35 Single pin connection of a non floating voltage supply with positive polarity to ground Figure 2 34 and Figure 2 35 The voltage dip on the ground rail between the voltage source and the input amplifier appears as a measuring error Only use when ground cables are short or choose a circuit configuration as shown in figure 2 36 UH U AE AE M Figure 2 36 ...

Page 165: ... negative is referred to ground Figure 2 36 and Figure 2 37 The voltage dip on the ground rail between the voltage source and the input amplifier appears as a common mode voltage and is suppressed 2 2 4 Connection of the interface D Connection of the interface module 6DR2803 8C RS 232 point to point Can be inserted in slot 4 RS 485 Rxd Controller Remote system 4 2 4 3 4 7 4 8 Txd Reference 2 3 5 R...

Page 166: ...32 RS 485 Bus 1000 m SES Remote system Instrument 1 Instrument 2 to Rxd Txd B Rxd Txd A 9 pin bus plug for round cable C73451 A347 D39 8 Rxd Txd A Note line termination TheRS 485bus mustbeterminatedwith its characte ristic impedance To do this the terminating resistor in the last bus user is switched by plugging the co ding bridge appropriately 8 Rxd Txd A 8 Rxd Txd A 3 Rxd Txd B 3 Rxd Txd B 3 Rxd...

Page 167: ...ave to PROFIBUS module max number of instruments without repeater 32 max number of bus users Slave Master 126 PROFIBUS module Master Figure 2 41 Principle diagram SIPART DR22 via PROFIBUS DP and bus plug to Master Note line termination The RS 485 bus must be terminated with a characteristic impedance To do this the switch in the bus connector must be switched ON in the first and last bus users The...

Page 168: ...Manual 2 Installation 2 2 Electrical Connection 2 2 4 Connection of the interface 166 SIPART DR22 6DR2210 C79000 G7476 C154 03 ...

Page 169: ...rnal setpoint the C LED 3 also lights green when there is no CB control signal Yellow is the color of the manipulated variable The yellow H A key is used to switch between manual and automatic operation The yellow manual LED 8 signals by lighting steadily or flashing that manual operation has been activated Lighting up of the yellow y external LED 10 signals an external intervention in the manipul...

Page 170: ...configuring 11 1 Controller I LED green Operation Display level controller I 11 2 Controller II LED green Operation Display level controller II Flashing Display and active func tions are not identical ON Display and active functions are identical 12 Shift key Switch Operation and Display level controllerI controller II 13 1 Δy key 13 2 Δy key 14 Digital display yellow for the manipulated variable ...

Page 171: ...figuring level the controller automatically returns to the process operation level SIPART DR22 SIPART DR22 SIEMENS SP W OUT Y C ST A1 A2 A3 A4 Int I 100 80 60 40 20 0 II onPA AdAP only at S58 0 StrU only at bLS 0 or no if bLPS 1 no function 13 2 13 1 Adjustment onPA AdAP StrU Enter key jump to parameterization mode onPA AdAP or in structuring preselection level to oFPA Command variable w Controlle...

Page 172: ... and Monitoring Exit key 2 bLb or bLPS in the w display PS in the y display flashes onPA AdAP only appears in S58 0 When bLb 1 only the display level can be switched Shift key 12 up to approx 5 s Online parameters see chapter 3 3 2 pg 173 Adaptation see chapter 3 3 3 pg 175 Parameterization modes 1 2 only when bLS 0 3 to w key 6 w key 6 w key 6 Exit key 2 Enter key 9 Exit key 2 Figure 3 3 Selectio...

Page 173: ...r 3 3 4 pg 182 Parameter control see chapter 3 3 5 pg 184 Structure switches see chapter 3 3 6 pg 186 PASt This part only appears when S4 1 Signal selection see chapter 3 3 12 pg 211 CAE4 only appears when S8 3 w keys 6 w keys 6 2 3 w keys 6 w keys 6 w keys 6 w keys 6 Enter key 9 w keys 6 Exit key 2 Enter key 9 Exit key 2 Enter key 9 Exit key 2 Enter key 9 Exit key 2 Enter key 9 Exit key 2 Enter k...

Page 174: ...Enter key causes a jump down to the next level in the hierarchy The digital x display still indicates the controlled variable x except in mode AdAP see chapter 3 3 3 page 175 The y keys 13 serve to adjust the parameter name displayed in the y display In double controllers the remaining process displays can still be switched over to the controllers not selected in the process operation level with t...

Page 175: ... A3 A4 Int I 100 80 60 40 20 0 II Parameter value 13 2 13 1 Adjustment of parameter value with rapid action Enter key no function Command variable w Controlled variable x Exit key Return to the parameterization preselection level after onPA Shift key Continuous pressing switches process display to unsignaled controller Enter LED off Controller LEDs steady or flashing light signals displayed contro...

Page 176: ...tion factor Integral action time Derivative action time Parameter set II Response threshold xdII Operating point P controller Manipulated variable limiting start Manipulated variable limiting end dr tY tA tE rolled variable x 0 080 to 8 000 2 oFF 1 to 1000 20 to 600 20 to 600 0 80 oFF 200 200 0 080 128 values octave 20 20 s s ms ms Display refresh rate Floating time min actuating pulse pause min a...

Page 177: ...atic operation The parameterization mode AdAP has 4 different states Pre adaptation During adaptation Aborted adaptation Post adaptation The digital display and the keys are assigned different functions in the individual states which are integrated smoothly in the operating concept of the controller In pre and post adaptation the digital displays and the keys are used for the parameter display and...

Page 178: ...SiES ybLES can be prevented by Internal operation D Post adaptation The adaption LED 4 is on indicating the end of adaptation The parameters o with the ID Pi or Pid and the new parameters n with the ID Pi 1 to 8 and Pid 1 to 8 for Pi and Pid controller design are offered The digits after the Pi or Pid ID indicate the determined line order If there is parameter control S59 0 the old parameters o ar...

Page 179: ...rally active line transient recovery time t95 12 h too x after 50 tU still within starting band SMAL tU too short y step too small ALL step response in wrong direction within PASS 30 tU Change active direction of the controller control loop undershoot all pass loop all pass loops not defined among loop models Y y outside the measuring span of 0 to 100 oFL no after expiry of Ty the y step dY in the...

Page 180: ...parameters o are active During adaptation Adaptation LED 4 flashing Complete process display cP n Pi Exit key 2 Parameterization mode AdAP by error mes sages manual of the adap via tation Exit key procedure see table 3 2 pg 177 Error message display tU oFF 0 1 to 24 h dPv nEG PoS dY 0 5 to 90 o Pi or Pid n Strt AdAP Exit key 2 Exit key 2 Exit key 2 Exit key 2 Exit key 2 aborted adaptation Adaptati...

Page 181: ... after adaptation o Pi or Pid n Pi and Pid Parameter name tU dPv d Y SG vv o vv n AH o AH n Loop or der 1 to 8 Parameter name Controlled variable x Figure 3 6 Control and display elements in pre and post adaptation in the parameterization mode AdAP SIPART DR22 SIPART DR22 SIEMENS SP W OUT Y C ST A1 A2 A3 A4 Int I 100 80 60 40 20 0 II 13 2 13 1 no function Enter key during adaptation no function af...

Page 182: ...er control led vv n AdAP Strt 1 Start adaptation cP o Pi or Pid 0 100 100 01 or PASt 1 0 100 128 values per octave 1 previous proportional action factor at Tv oFF Tv oFF previous proportional action factor parameter controlled cP n AdAP Strt 1 Start adaptation tn o Pi or Pid 1 000 99841 or PASt 1 9984 128 values per octave s previous integral action time at Tv oFF Tv oFF previous integral action t...

Page 183: ...Pi Pid 0 100 100 02 0 100 100 02 128 values per octave 1 1 new proportional action factorfor PI controller PID controller tn o Pi or Pid 1 000 9984 or PASt 1 9984 128 values per octave s previous integral action time at Tv oFF Tv oFF previous integral action time parameter comtrolled tn n tn n Pi Pid 1 000 99842 1 000 99842 128 values per octave s s new integral action time for PI controller PID c...

Page 184: ...7 16 Exit LED flashes Adaptation LED off Enter LED off Adjustment of parameter name Parameter value Striped pattern ID offline dark for S4 0 or at S4 1 function block to which the parameter belongs Parameter name flashing dPI tE Adjustment of parameter value with rapid action Exit key Return to oFPA in structuring preselection level Figure 3 8 Control and display elements in the structuring mode o...

Page 185: ...rtex value at 10 Linearized FE1 vertex value at 110 Linearized FE3 vertex value at 10 Linearized FE3 vertex value at 0 Linearized FE3 vertex value at 10 Linearized FE3 vertex value at 110 only when S4 0 and S20 or S21 1 10 0 10 110 10 0 10 110 FU1 FU1 FU1 FU1 FU2 FU2 FU2 FU2 199 9 to 199 9 199 9 to 199 9 199 9 to 199 9 199 9 to 199 9 199 9 to 199 9 199 9 to 199 9 199 9 to 199 9 199 9 to 199 9 10 0...

Page 186: ...IPART DR22 SIEMENS SP W OUT Y C ST A1 A2 A3 A4 Int I 100 80 60 40 20 0 II 13 2 13 1 Controlled variable x Shift key Continuous pressing switches the process display to unsignaled controller Controller LEDs Steady or flashing light signals displayed controller Manual LED ON manual operation Internal LED current status 6 2 6 1 1 2 3 4 8 9 10 11 12 19 14 18 17 16 Adaptation LED off Enter LED flashes ...

Page 187: ... 0 0 0 0 0 1 Response threshold at SG 10 Response threshold at SG 30 Response threshold at SG 50 Response threshold at SG 70 Response threshold at SG 90 Y01 Y03 Y05 Y07 Y09 Auto 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 1 Operating point P Reg at SG 10 Operating point P Reg at SG 30 Operating point P Reg at SG 50 Operating point P Reg at SG 70 Operating point P Reg at SG 90 SG means controlling variable for...

Page 188: ... controller Controller LEDs steady or flashing light signals displayed controller Manual LED ON manual operation Internal LED current status 6 2 6 1 1 2 3 4 8 9 10 11 12 19 14 18 17 16 Adaptation LED off Enter LED off Adjustment of structure switch number with rapid action Adjustment of structure switch position Exit key Return to structuring preselection level after StrS Striped pattern ID offlin...

Page 189: ...de control min selection y Process display Fixed setpoint controller with 1 setpoint control system coupling Follow up controller without Int Ext switching control system coupling Double fixed setpoint follow up controller S2 0 1 2 Output structure K output S output internal feedback S output external feedback inputs S3 0 1 Mains frequency suppression 50 Hz 60 Hz Analog i S4 0 1 Connection of inpu...

Page 190: ...F 0 in open circuit Uni with MUF 100 in open circuit S10 0 1 Root extraction AE1 no yes S11 0 1 Root extraction AE2 no yes S12 0 1 Root extraction AE3 no yes S13 0 1 Root extraction AE4 no yes S14 0 1 Root extraction AE5 no yes Analog inputs only active when S4 S15 0 1 4 5 6 7 8 9 10 11 2 3 Assignment FE1 to AE1 to AE11 0 AE1A AE4A AE5A AE6A AE7A AE8A AE9A AEAA AEbA AE2A AE3A Structure switches Sw...

Page 191: ...S bLPS S30 P I S31 P II S32 PAU S33 Δw S34 Δw S35 Δy S36 Δy S37 ybL S38 ybL Assignment 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 High Low 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 BE1 BE2 Basic BE3 card BE4 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5...

Page 192: ...1 0 1 setpoint in event of CB failure last wi at S52 0 last w safety setpoint SH s S52 0 1 Follow up of wi to the active setpoint yes no S53 0 1 Source for the external setpoint absolute setpoint WEA incremental setpoint WE Structure switches Switch position Function S54 0 1 Direction of effect of controller I referenced to xd I normal cP 0 reversed cP 0 thm S55 0 1 2 3 D element and z lock on con...

Page 193: ...ble YN incremental manipulated variable YN ng S63 0 1 2 Manual operation in event of trans mitter fault no switching fault display only manual operation starting with last y manual operation starting with ys output switchin S64 0 1 2 3 4 switching manual automatic via Manual key Hi control s He interlock HeES yes yes static with no yes static with no switching only manual mode yes yes dynamic with...

Page 194: ... 28 29 30 31 32 33 34 35 36 37 38 39 40 41 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 0 y y1 y2 AE1A AE2A AE3A AE4A AE5A FE1 FE2 FE3 FE4 FE5 FE6 50 xd I 50 xd I x I w I xv wv 50 xd II 50 xd II x II w II 50 xdS 5...

Page 195: ...9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 BA9 Slot BA10 BA11 5 BA12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16 BA13 Slot BA14 BA15 6 BA16 Note Same assignment initiates or function Unassigned digital outputs BAs can be set by SES In structured S controllers S2 0 or S231 0 bei ...

Page 196: ... 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 21 32 33 34 35 36 37 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 21 32 33 34 35 36 37 xdI xI wI xv wv xdII xII wII y y1 y2 AE1A AE2A AE3A AE4A AE5A FE1 FE2 FE3 FE4 FE5 FE6 xdS yII y3 y4 AE6A AE7A AE8A AE9A AEAA AEbA FE7 FE8 FE9 FE10 FE11 FE12 NOTE S94 Assignment also for A2 if S267 1 S95 Assign...

Page 197: ...al signaling after mains recovery or reset without flashing of the digital with x display Structure switches Switch posi tion Function S101 0 1 2 3 4 5 Data transfer Reception Control signal Source for by DR22 CBBE CBES wE yN nothing only wEA yN configure CBBE bzw bzw WE yN configure CBBE CBES wES yES process CBBE CBES variables CBBE CBES wEA yN status CBBE CBES or or registers WE yN S102 0 1 2 3 ...

Page 198: ...20 mA with MUF S204 0 1 2 3 Input signal AE10 0 20 mA without MUF 0 20 mA with MUF 4 20 mA without MUF 4 20 mA with MUF S205 0 1 2 3 Input signal AE11 0 20 mA without MUF 0 20 mA with MUF 4 20 mA without MUF 4 20 mA with MUF S206 0 1 Root extraction AE6 no yes S207 0 1 Root extraction AE7 no yes S208 0 1 Root extraction AE8 no yes S209 0 1 Root extraction AE9 no yes S210 0 1 Root extraction AE10 n...

Page 199: ... 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 BE5 BE6 Slot BE7 BE8 5 BE9 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 10 11 12 13 14 BE10 BE11 Slot BE12 BE13 6 BE14 15 16 17 18 15 16 17 18 15 16 17 18 15 16 17 ...

Page 200: ...0 1 2 3 4 Switching manual automatic controller II via Manual key Hi control s He interlock HeES yes yes static with no yes static with no switching manual operation yes yes dynamic with yes yes dynamic without switching S241 0 1 Function split range controller 2 only K controller y3 rising y4 falling y1 rising y4 rising output sw S242 0 1 Iy switch off in N II DDC II mode only K controller withou...

Page 201: ...27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 0 y I y1 y2 AE1A AE2A AE3A AE4A AE5A FE1 FE2 FE3 FE4 FE5 FE6 50 xd I 50 xd I x I w I xv wv 50 xd II 50 xd II x II w II 50 xdS I 50 xdS I y II y3 y4 AE6A AE7A AE8A AE9A AEAA AEbA FE7 FE8 FE9 FE10 FE11 FE12 Assignment of digital signals to d...

Page 202: ...2 33 34 35 36 37 38 39 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 like A1 or A3 xdI xI wI xv wv xdII xII wII y y1 y2 AE1A AE2A AE3A AE4A AE5A FE1 FE2 FE3 FE4 FE5 FE6 xdS yII y3 y4 AE6A AE7A AE8A AE9A AEAA AEbA FE7 FE8 FE9 FE10 FE11 FE12 jxdΙj jxdΙΙj S269 1 0 18 tsH1 see S228 Function S270 1 0 18 tsH2 see S228 S271 0 1 2 Locking o...

Page 203: ...ion w answer Ar1 Ar2 Ar3 Ar4 Ar5 Ar6 Fu1 Fu2 MA1 MA2 MA3 Mi1 Mi2 Mi3 YES or no Digital display continued x question w answer rE1 AS1 AS2 AS3 AS4 AS5 Co1 Co2 nA1 nA2 no1 no2 YES or no Table 3 9 Question answer cycle structuring mode FdEF SIPART DR22 SIPART DR22 SIEMENS SP W OUT Y C ST A1 A2 A3 A4 Int I 100 80 60 40 20 0 II 13 2 13 1 Controlled variable x Shift key Continuous pressing switches the p...

Page 204: ...source can be con nected with as many sinks as you like The parallel loop of inputs sinks is therefore achieved by connection of the respective inputs with the same output source The presettings of the inputs ncon or numeric values specified in the description of the various functions is transferred to the FCon mode and can be changed overwritten there if necessary Changes in the FdEF if FCon has ...

Page 205: ...3 3 Mi1 1 Mi1 2 Mi1 3 Mi3 1 Mi3 2 Mi3 3 rE1 1 rE1 2 rE1 3 AS1 1 AS1 2 AS5 2 AS5 3 Co1 1 Co1 2 Co2 2 Co2 3 nA1 1 nA1 2 nA2 2 nA2 3 no1 1 no1 2 no2 2 no2 3 ncon AE1A AEbA Ar1 6 Ar6 6 Fu1 2 Fu2 2 MA1 4 MA2 4 MA3 4 Mi1 4 Mi2 4 Mi3 4 P01 P15 rE1 4 1 000 500 250 050 0 000 0 050 0 100 0 200 0 500 1 000 1 050 AS1 4 AS5 4 Co1 4 Co2 4 nA1 4 nA2 4 no1 4 no2 4 bE01 bE09 AE1 AE5 AE A1 A2 A3 A4 Int I Int II SPi...

Page 206: ...signaled controller Controller LEDs steady or flashing light signals displayed controller Manual LED ON manual mode Internal LED current status 6 2 6 1 1 2 3 4 8 9 10 11 12 19 14 18 17 16 Adaptation LED off Enter LED off Exit key Return to structuring preselection level after FCon Striped pattern ID offline Enter key no function Exit LED flashes PS Parameterization structuring Answer ncon AE1A SAA...

Page 207: ...orrected with inSt dElt and nPos in the answer cycle D Function inSt insert To insert a not yet positioned function in an existing positioning sequence Set the position with y keys 13 in place of which the not yet positioned function block is to be inserted Set inSt with w keys 6 inSt the Enter LED flashes and indicates the effectiveness of the Enter key On pressing the Enter key 9 the set positio...

Page 208: ...r marked by nPos in the structuring mode FPos the error can be corrected D nPoS Err Ending positioning with a positioning sequence which contains nPos gaps is not allowed If the configuring mode is to be exited with the Exit key and nPos gaps still exist the flashing error message nPos Err exists The structuring preselection level is not exited the error can be corrected Enter key or ignored Exit ...

Page 209: ...8 17 16 Adaptation LED off Enter LED flashes in inSt and dELt Exit key Return to structuring preselection level after FPos Striped pattern ID offline Enter key run inSt or dELt function Exit LED flashes PS Parameterization structuring Answer Question Adjustment answer Adjustment question no1 no2 Positioning number nPoS no2 Figure 3 13 Control and display elements in the structuring mode FPoS Appli...

Page 210: ... Ar 2 3 Ar 2 4 Ar 2 5 E1 E2 E3 E4 E5 E1 E2 E3 E4 E5 A nr 2 Ar 2 6 1 0 0 0 1 05 Mi 1 F Mi 1 1 Mi 1 2 Mi 1 3 E1 E2 E3 FE 2 FE 3 FE 4 FE 5 FE 6 0 0 0 0 0 0 0 0 0 0 Min FE 1 x1 x2 x3 AE3 A P1 3 0 x Ar 1 F Ar 1 1 Ar 1 2 Ar 1 3 Ar 1 4 Ar 1 5 D Structurings StrS S1 11 S4 1 S5 3 S6 3 S7 3 S23 4 S72 1 rest of structure switches factory setting oFPA PAST depending on task set Question Answer Ar1 F YES Ar2 F...

Page 211: ...ressing switches the process display to unsignaled controller Controller LEDs steady or flashing light signals displayed controller Manual LED ON manual operation Internal LED current status 6 2 6 1 1 2 3 4 8 9 10 11 12 19 14 18 17 16 Adaptation LED off Enter LED flashes at YES and FPSt Exit key Return to structuring preselection level after FPSt Striped pattern ID offline Enter key up to structur...

Page 212: ... Controller LEDs steady or flashing light signals displayed controller Manual LED ON manual operation Internal LED current status 6 2 6 1 1 2 3 4 8 9 10 11 12 19 14 18 17 16 Adaptation LED off Enter LED flashes at YES and APSt Exit key Return to structuring preselection level after APSt Striped pattern ID offline Enter key until structuring preselection level Strs appears Exit LED flashes PS Param...

Page 213: ... _C _F _AbS Degrees Celsius Degrees Fahrenheit Degrees Kelvin _C tc Thermocouple type L J H S b r E n t U Lin Type L J K S B R E N T U any type without linearization L SEnS tc in tc EH tb 1 Temperature reference point 0 0 400 0 50 0 _C _F _AbS SEnS tc EH Mr Line resistance 0 00 100 00 10 00 ohms SEnS Pt 2L Cr Calibration line resistance Difference to Mr ohms SEnS Pt 2L MP Decimal point measuring r...

Page 214: ...175 _C D CA CE fine adjustment Call parameter CA Set signal at the low end of the range correct the display with CA if necessary Call parameter CE Set signal at the top end of the range correct the display with CE if necessary 3 3 12 2 Measuring range for U I SEnS Mv D MA ME measuring range The setting is made in mV 175 mV to 175 mV The input signal types U and I are set to range 0 20 to 100 mV in...

Page 215: ... tb external reference point temperature Set the external reference point temperature with tb Specify temperature unit with unit Attention tb has no effect at tc Lin D MA ME measuring range Call parameters MA ME set range start and full scale according to temperature unit tc D CA CE fine adjustment Call parameter CA Set signal at the low end of the range correct the display with CA if necessary Ca...

Page 216: ...ith Unit D CA CE fine adjustment Call parameter CA Set signal at the low end of the range correct the display with CA if necessary Call parameter CE Set signal at the top end of the range correct the display with CE if necessary 3 3 12 7 Measuring range for resistance potentiometer SEnS r _ for R 600 Ω SEnS r for R 2 8 kΩ Path 1 The start and end values of the R potentiometer are known Call parame...

Page 217: ... range or no falling characteristic in linearization in the fixed connected range D Direction of effect of system and actuator known K controller The following is prescribed Select the desired effect here This gives settings of S54 or S56 Direc tion of effect Direc tion of effect Direc tion of effect 20 mA pressing the right key causes in manual operation This gives settings of S54 or S56 and S68 ...

Page 218: ... mode leave structure switches S54 S56 and S68 in factory setting 0 Determine direction of effect of the actuator Press the right manipulated variable adjusting key if possible with the process switched off or near to its safety position and observe whether the actuator opens or closes If the actuator opens this means it has normal effect If closing is determined in S controllers the connections y...

Page 219: ...le 4 2 Setting the split range outputs and the actuating time in K controllers S2 0 D Split range outputs Y1 Y2 In split range operation the two partial manipulated variables must be adapted to the control range of the individual final control elements with the slope setting so that as constant a system amplification Ks as possible is achieved over the whole setting range Determine the system line...

Page 220: ...cted under consideration of the power switches connected before it before a new pulse appears especially in the opposite direction The greater the value of tA the more resistant to wear the switching and drive elements connected after the controller operate and the greater the dead time of the controller under some circumstances The value of tA is usually set identical to the value of tE tA tE 120...

Page 221: ...y 50 or 60 Hz existing in the system factory setting 50 Hz to suppress faults due to the mains frequency D Filter of first order of analog inputs The filter time constants tF1 to tFb for the input filters are set in the onPA parameterization mode and to the greatest possible value permitted by the control circuit without affecting the controlability tF1 to tFb Tg When using the adaptation method t...

Page 222: ...lled systems with batches it is recommendable to perform one adaptation with rising x and one with falling x The averaged or dynamically more uncritical parameters can then be used for the con trol dy Amplitude of the step command parameterization mode AdAP The step command must be selected so great that the controlled variable changes by at least 4 and the controlled variable change must be 5 tim...

Page 223: ...adaptation must take place at a low level without exceeding the maximum permissible core temperature In the other case if the cooling water is switched off or fails the maximum permissible casing temperature is exceeded when adapted to the normal core temperature In this case adaptation must take place at a low core temperature Non linear controlled systems In non linear controlled systems several...

Page 224: ...he special cases controlled system of the 1st order in connection with Pi and PiD controllers and controlled systems of 2nd order in connection with PiD controllers the kp can be varied freely In controller design according to the amount optimum Kp can be increased up to 30 as a rule without the control behavior becoming critical ...

Page 225: ...tation Adaptation LED 4 flashing Complete process display cP n Pi Exit key 2 Parameterization mode AdAP by error messages manual of the adap via tation Exit key procedure see table 3 2 pg 177 Error message display tU oFF 0 1 to 24 h dPv nEG PoS dY 0 5 to 90 o Pi or Pid n Strt AdAP Exit key 2 Exit key 2 Exit key 2 Exit key 2 Exit key 2 Aborted adaptation Adaptation LED 4 OFF Post adaptation Adaptat...

Page 226: ... the oscillations disappear D PD controller control signal P high Set the desired setpoint and set the control difference to zero in manual operation The operating point necessary for the control difference is set automatically in manual operation at Yo AUto factory setting The operating point can also be entered manually by setting the online parameter Yo to the desired operating point Switch to ...

Page 227: ...htly until the tendency to oscillate disappears 4 7 Manual setting of the control parameters after the transient function If the transient function of the controlled system is active or can be determined the control pa rameters can be set according to the setting guidelines specified in the literature The transient function can be recorded in the Manual mode position of the controller by a sudden ...

Page 228: ...R22 6DR2210 C79000 G7476 C154 03 y Manipulated variable w Command variable x Controlled variable t Time Tu Delay time Tg Compensation time Ks Transmission factor of the controlled system y t x t Tg x Ks x y Tu y Figure 4 2 Transient function of a controlled system with compensation ...

Page 229: ...TTENTION All modules contain components which are vulnerable to static Observe the usual safety precautions To maintain the current for the controller manipulated variable of the K controller use the yhold module see chapter 1 4 2 page 13 Final control elements on S controllers remain in their last position WARNING The power supply unit and the interface relay may only be changed when the power su...

Page 230: ...3 1 Fixing screw for the front module 1 Figure 5 1 Front module with rating plate and cover removed 1 Fixing screw shaft screw 2 Sealing ring 3 Front panel 4 Front board 5 Main board 6 Plug Ribbon cable 7 Power supply unit 8 Connection plate 1 2 3 4 8 7 6 5 Figure 5 2 Controller with front module open ...

Page 231: ...Figure 5 2 Install in reverse order Make sure the seal is positioned perfectly D Replacing the customer foil The customer foil should be pulled out from underneath the front panel with tweezers It is labelled with the most important display and control symbols and the scale 0 to 100 D Replacing the main board and option module Pull off the plug terminal Release the lock and pull out the module Att...

Page 232: ...or the power supply unit shaft screw 3 Plated Phillips screws for fixing the power supply circuit board in the casing 4 Power supply unit 5 Blanking plate 6 Plastic housing 7 Front module 1 2 3 2 3 2 7 2 6 3 5 4 Figure 5 3 Fixing the power supply unit D LED test and software state If the Shift key 12 is pressed for about 10 s PS flashes on the manipulated variable dis play after about 5 s this lea...

Page 233: ...Order 2 pieces Order 10 pieces C73451 A3001 C3 C73451 A3000 C11 C73451 A3001 C8 C73451 A3001 C25 C73451 A3000 B20 C73451 A3000 C41 3 3 1 3 2 3 3 3 4 3 5 4 Figure 5 3 4 Figure 5 3 2 Figure 5 3 Power supply unit Power supply unit 24 V UC Power supply unit 115 230 V AC Mains plug 3 pin plug for 115 230 V AC IEC 320 V DIN 49457A Special 2 pin plug for 24 V UC Shaft screw M4 SHR 4 16 KC SP without main...

Page 234: ...210 C79000 G7476 C154 03 D Ordering information The order must contain Quantity Order number Description For safety reasons we recommend that you also specify the instrument type in your order D Ordering example 2 units W73078 B1001 A714 Plug 14pin main board DR22 ...

Page 235: ...r 6DR2800 8R UNI module 6DR2800 8V Digital input module with 5 BE 24 V 6DR2801 8C Digital output module with 2 BA relays UC 35 V 6DR2801 8D Digital output module with 4 BA 24 V and 2 BI 6DR2801 8E Analog output module with 1 AA yHOLD 6DR2802 8A Analog output module with 3 AA and 3 BE 6DR2802 8B Interface relay module with 2 relays AC 250 V 6DR2804 8B Interface relay module with 4 relays AC 250 V 6...

Page 236: ...Manual 6 Ordering data 234 SIPART DR22 6DR2210 C79000 G7476 C154 03 ...

Page 237: ...he controlled variable x from a four wire transmitter goes to the analog input AE1 signal range 4 to 20 mA The manipulated variable y with 4 to 20 mA goes through AA1 to a position controller SIPART PS x wi Structure switch Strs Switch Value Meaning S 5 2 AE1 4 to 20 mA S 69 1 AA1 4 to 20 mA Parameter oFPA Para meters Value Meaning dP1 Decimal point dA1 Display start value dE1 Display full scale v...

Page 238: ...ing drive 4 to 20 mA are available ar AE2 as a position feedback only for display on the controller position feedback potentiometer with two wire connection The actuating drive has a runtime of 60 s for 0 to 100 deviation Alarms A1 xd 5 Max Output to BA1 A2 x 70 Max Output to BA2 Note The outputs of the S controller are permanently assigned to the digital outputs BA7 Δy BA8 Δy x wi M yR Structure ...

Page 239: ...2 from an external sensor 4 to 20mA Follow up of wiII to wEII With switching internal external via the opeating level Manipulated variable yII via BA to an actuating drive Alarms A1 xd1 5 Max Output to BA1 A2 x1 80 Max Output to BA2 A3 xd2 5 Max Output to BA3 A4 x2 70 Max Output to BA4 Note The outputs of the S controller are permanently assigned to the digital outputs BA5 Δy BA6 Δy structure swit...

Page 240: ...1j A2 70 Limit value to x1 A3 5 Limit value jxd2j A4 60 Limit value to x2 Parameter onPA Para meters Value Meaning cP1 Proportional action factor 1 tn1 Integral action time 1 cP2 Proportional action factor 2 tn2 Integral action time 2 AHII 0 5 Response threshold 2 tYII 60 s Runtime Drive tAII 200 Factory setting tAII 200 Factory setting Setting as required Attention All settings starting from the ...

Page 241: ... AE1 AE2 AE3 Switching between between AE1 x1 and AE2 x2 via digital input 1 The manipulated variable y 4 to 20 mA goes via analog output 1 to a position controller SIPART PS x3 PS BE x2 x1 Structure switch Strs Switch Value Meaning S 4 1 Input freely connectable S 5 2 AE1 4 to 20 mA S 6 2 AE2 4 to 20 mA S 7 2 AE3 4 to 20 mA S 69 1 AA1 4 to 20 mA Parameter oFPA Parameters Value Meaning dP1 Decimal...

Page 242: ...Manual 7 Application examples for configuring the controller 240 SIPART DR22 6DR2210 C79000 G7476 C154 03 ...

Page 243: ...50 ncon ncon 0 0 ncon 1 0 1 0 ncon ncon 0 000 0 000 1 000 Ar 6 Ar F nr Ar 1 Ar 2 Ar 3 Ar 4 Ar 5 E5 E1 E2 E3 E4 Ar1 to Ar5 E1 E2 E3 E4 E5 A Fu 2 Fu F nr Fu 1 Parameter Vertex value at 10 0 10 to 90 100 110 Fu1 Fu2 A E E A E2 E3 A x ΔP rE1 F Parameter tA tE PA PE rE1 1 rE1 2 rE1 3 rE 4 nr f E2 E3 rE1 MA 4 MA F nr MA 1 MA 2 MA 3 Max A MA1 bis MA3 Mi 4 Mi F nr Mi 1 Mi 2 Mi 3 Min A Mi1 bis Mi3 E3 E2 E1...

Page 244: ... p Integral action time tnII x 9984 s g Derivative action time tvII ble x oFF s Response threshold xdII AHII ariab 0 0 p Operating point P controller YoII d var Auto p g p Manipulated variable limiting start YAII olled 5 0 p g Manipulated variable limiting end YEII ntrol 105 0 Con Display refresh rate dr C 0 8 s p y Floating time tY oFF s g min actuating pulse pause tA 200 ms g p p min actuating p...

Page 245: ...nectable parameters connectable parameters P01 P02 olled v 1 1 1 1 connectable parameters connectable parameters P02 P03 Contro 1 1 1 1 connectable parameters connectable parameters P04 P05 C 1 1 1 1 connectable parameters connectable parameters P05 P06 1 1 1 1 connectable parameters connectable parameters P07 P08 1 1 1 1 connectable parameters connectable parameters t bl t P08 P09 P10 1 1 1 1 1 1...

Page 246: ...on time at SG 30 tn3 x 9984 s Integral action time at SG 50 tn5 able 9984 s Integral action time at SG 70 tn7 variab 9984 s Integral action time at SG 90 tn9 ed va 9984 s Derivative action time at SG 10 tv1 rolled oFF s Derivative action time at SG 30 tv3 Contro oFF s Derivative action time at SG 50 tv5 Co oFF s Derivative action time at SG 70 tv7 oFF s Derivative action time at SG 90 tv9 oFF s Re...

Page 247: ...de control Sb 0 0 Setpoint ramp R ti f t t t tS vA oFF 0 000 min 1 Ratio factor start Ratio factor end vA vE 0 000 1 000 1 1 Ratio factor end Safety manipulated variable vE YS 1 000 0 0 1 Safety manipulated variable Manipulated variable 1 t YS Y1 0 0 50 0 p ange y1 at Manipulated variable Split range Y2 50 0 Manipulated variable Split range ange y2 Vertex value at 10 1 1 10 FU1 10 Vertex value at ...

Page 248: ...FU2 FU2 60 Vertex value at 70 at S4 Linea t S4 Functi 7 3 70 FU2 FU2 70 Vertex value at 80 at Li at Fu 8 3 80 FU2 FU2 80 Vertex value at 90 9 3 90 FU2 FU2 90 Vertex value at 100 10 3 100 FU2 FU2 100 Vertex value at 110 11 3 110 FU2 110 Correction quotient pressure start Correction quotient pressure end Correction quotient temperature start Correction quotient temperature end PA PE tA TE rE rE rE r...

Page 249: ... 0 20 0 21 0 22 0 23 0 24 1 25 2 26 3 27 4 28 0 29 0 30 0 31 0 32 0 33 0 34 0 35 0 36 0 37 0 38 0 39 0 40 0 41 0 42 0 43 0 44 0 45 0 46 0 47 0 48 0 49 0 50 0 51 0 Switch b Preset Factory i Switch number Factory setting 52 0 53 0 54 0 55 0 56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 0 66 0 67 0 68 0 69 0 70 0 71 0 72 0 73 1 74 0 75 0 76 1 77 2 78 3 79 4 80 5 81 6 82 0 83 0 84 0 85 0 86 0 87 0 8...

Page 250: ... 205 0 206 0 207 0 208 0 209 0 210 0 211 0 212 0 213 0 214 0 215 0 216 0 217 0 218 0 219 1 220 0 221 0 222 0 223 0 224 0 225 0 226 0 227 0 228 0 229 0 230 0 231 0 232 0 233 0 234 0 Switch Preset Factory Switch number Factory setting 235 0 236 0 237 0 238 0 239 0 240 0 241 0 242 0 243 0 244 0 245 0 246 0 247 0 248 0 249 0 250 0 251 0 252 1 253 0 254 0 255 0 256 0 257 0 258 0 259 0 260 0 261 0 262 0...

Page 251: ...Ques Answer display 19 w Preset Ques tion display display 16 x YES no YES no YES no YES no Ar1 Ar2 Ar3 Ar4 Ar5 Ar6 Fu1 Fu2 MA1 MA2 MA3 Mi1 Mi2 Mi3 rE1 AS1 AS2 AS3 AS4 AS5 co1 co2 nA1 nA2 no1 no2 Question display Answer display 19 w Preset display 16 x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 FPos lists freely connectable range ...

Page 252: ...nectable range Question display 16 Answer display 19 w Preset p y 16 x Ar1 1 Ar1 2 Ar1 3 Ar1 4 Ar1 5 Ar2 1 Ar2 2 Ar2 3 Ar2 4 Ar2 5 Ar3 1 Ar3 2 Ar3 3 Ar3 4 Ar3 5 Ar4 1 Ar4 2 Ar4 3 Ar4 4 Ar4 5 Ar5 1 Ar5 2 Ar5 3 Ar5 4 Ar5 5 Ar6 1 Ar6 2 Ar6 3 Ar6 4 Ar6 5 FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10 FE11 FE12 FU1 1 FU1 2 MA1 1 MA1 2 MA1 3 MA2 1 MA2 2 MA2 3 MA3 1 MA3 2 MA3 3 ...

Page 253: ...ange Question display 16 Answer display 19 w Preset p y 16 x Mi1 1 Mi1 2 Mi1 3 Mi2 1 Mi2 2 Mi2 3 Mi3 1 Mi3 2 Mi3 3 rE1 1 rE1 2 rE1 3 AS1 1 AS1 2 AS1 3 AS1 4 AS1 5 AS2 1 AS2 2 AS2 3 AS2 4 AS2 5 AS3 1 AS3 2 AS3 3 AS3 4 AS3 5 AS4 1 AS4 2 AS4 3 AS4 4 AS4 5 AS5 1 AS5 2 AS5 3 AS5 4 AS5 5 co1 1 co1 2 co1 3 co2 1 co2 2 co2 3 nA1 1 nA1 2 nA1 3 nA2 1 nA2 2 nA2 3 no1 1 no1 2 no1 3 no2 1 no2 2 no2 3 ...

Page 254: ...nS Temperature unit unit Thermocouple type tc Temperature reference point tb Line resistance Mr Decimal point measuring range MP Range start MA Range full scale ME Parameter CAE5 Parameter meaning Digital indication on displays 16 x 19 w 16 x Sensor type SEnS Temperature unit unit Thermocouple type tc Temperature reference point tb Line resistance Mr Decimal point measuring range MP Range start MA...

Page 255: ...rameterization Structuring via digital input BLPSES Control signal Blocking Parameterization Structuring via SES BLS Control signal Blocking Structuring BLSBE Control signal Blocking Structuring via digital input BLSES Control signal Blocking Structuring via SES c Parameter Constants C LED no computer standby CB Control signal Computer operation CBBE Control signal Computer operation via digital i...

Page 256: ...trol signal manual external via digital input HeES Control signal manual external via SES HE Error message manual external inSt Insert Int Control signal internal Kp Proportional action factor LED Light emitting diode MA Function block maximum selection MEM Memory Mi Function block Minimum selection ModE Operating mode MUF Transmitter fault ncon Not connected n ddc Error message follow up or DDC n...

Page 257: ...r correction quotient temperature end RC Control signal no computer operation S Structure switch SA Parameter command variable limiting start Sb Parameter limiting setpoint SE Parameter command variable limiting end SES Serial interface SG Parameter controlling variable SH Parameter safety setpoint Si Control signal safety operation error message safety operation SiBE Control signal safety operati...

Page 258: ... factor y Manipulated variable y1 Partial manipulated variables in split range y2 Partial manipulated variables in split range Y1 Parameter manipulated variable range 1 in split range Y2 Parameter manipulated variable range 2 in split range YA Parameter manipulated variable limit start YE Parameter manipulated variable limit end yE External manipulated variable yES External manipulated variable vi...

Page 259: ... via digital inputs ΔyES Control signal incremental y adjustment via digital inputs 1 1 to 11 1 Parameter vertext points linearizer FE1 1 3 to 11 3 Parameter vertex points linearizer FE3 Controller Internal External Exit Enter Fault Error message fault analog inputs Identification decimal point AE adjustable I Parameter set I II Parameter set II o old parameters n new parameters stands for counter...

Page 260: ...Manual 9 Explanation of abbreviations 258 SIPART DR22 6DR2210 C79000 G7476 C154 03 ...

Page 261: ...es 177 S54 to S60 89 Adaptation method 175 220 S58 96 Adaptation results Notes 221 Adaption S58 96 Adaptive filter 93 AH 94 219 Alarms A1 to A4 Parameter range 182 Resolution 182 Analog output signal processing 120 AND NOT function 33 Application examples 235 APSt 210 Arithmetic Ar 27 Assembly Digital inputs 10 Digital outputs 10 Automatic mode 112 Automatic switching 36 40 58 71 81 92 Blocking of...

Page 262: ...olled systems non linear 221 Controlled variable processing 60 Controlled variables Limiting direction of the 79 Controller base file GSD 18 Controller design 98 Controller direction of effect 92 Adaptation to controlled system 215 Controller I at S1 12 block diagram 87 Controller II at S1 12 block diagram 88 Controller output structures 99 Controller structure I Block diagram 90 Controller struct...

Page 263: ...oller DDC 52 S1 12 86 with 1 setpoint 84 with 2 dependent setpoints 51 with 2 independent setpoints 48 Fixed value memory 13 Floating time tY 217 Floating time tY 101 Follow up DDC mode 112 Follow up controller 58 75 S1 12 86 without Int Ext switching 85 Follow up controller Controller I 70 FPos 205 Configuring tool 249 FPSt 209 Front module Control elements 12 Display elements 12 Replacing 229 Fr...

Page 264: ...ing yA yE 93 Manual mode 112 113 Manual setpoint preset wi 40 Manual switching 36 40 58 71 81 Blocking of the 113 Mass flow computer m2 31 Master controller 75 Controller II 70 Maximum value selection 27 Measuring range for mV 212 for Pt100 213 for resistance potentiometer 214 for thermocouples 213 for U I 212 Measuring range plug 15 135 153 Mechanical Installation 143 Minimum value selection 28 M...

Page 265: ...R 155 Thermocouple TC 154 PoS Err 206 Power on reset 20 Power Supply Standard controller 129 Power supply 9 Power Supply Connection 144 Power supply unit 12 Replacing 230 Process display 83 Process operation level 167 PROFIBUS DP Connection 165 PROFIBUS DP 6DR2803 8P 17 Pt100 resistance thermometer 14 Pin assignment 154 Q Question answer cycle FCon 203 FdEF 201 FPos 206 R R module 6DR2800 8R 14 Ra...

Page 266: ...Connection 146 Setpoint adjustment 40 default 40 limits SA SE 41 ramp 40 Color of the 167 Display of external 59 Operation with 2 or 3 60 Setpoint display 43 Setting of the linearizer at S4 0 45 Si 39 SIPART DR22 Front view 10 Rear view 11 tSH 39 Spare parts list 231 Spark quenching element 15 SPC controls 58 SPC controller 58 Split range Outputs Y1 Y2 217 Split range function rising falling 100 S...

Page 267: ...stem with compensation 226 tS 40 tU 220 tv Err 185 tY 101 217 U UNI module 6DR2800 8V 14 User program memory 12 21 V Volume flow computer 32 W w 40 Watch dog reset 20 wE 59 wi 40 Wiring Option module 150 Writing time 21 X x tracking 41 71 Y y 40 y display source and direction of effect 113 Y0 Err 185 Y1 Y2 217 yBL 40 yhold function 16 yo 92 Z zD 89 Zero volt system Connection 146 zy 89 ...

Page 268: ...Manual 266 SIPART DR22 6DR2210 C79000 G7476 C154 03 ...

Page 269: ......

Page 270: ...engesellschaft Automation and Drives Sensors and Communication 76181 KARLSRUHE GERMANY Controller SIPART DR22 6DR2210 www siemens com processautomation Controller SIPART DR22 6DR2210 12 2006 Manual Edition p sipart C79000 G7476 C154 03 1PC79000G7476C154 C79000 G7476 C154 ...

Reviews: