EL-509WM_ENGLISH_1
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1 2 3 4 5 6 7 8 9 0 . ,
1
4
[]
1
3(5+2)=
ª
3
(
5
+
2
)=
21.
2
3
×
5+2=
3
*
5
+
2
=
17.
3
3
×
5+3
×
2=
3
*
5
+
3
*
2
=
21.
→
1
@[
21.
→
2
]
17.
→
3
]
21.
→
2
[
17.
+-*/()±E
45+285
÷
3=
ª
45
+
285
/
3
=
140.
18+6
=
(
18
+
6
)/
15–8
(
15
-
8
=
3.428571429
42
×
(–5)+120=
42
*±
5
+
120
=
–90.
*
1
(5
±
)
*
1
(5
×
10
3
)
÷
(4
×
10
–3
)= 5
E
3
/
4
E
±
3
=
1’250’000.
34+57=
34
+
57
=
91.
45+57=
45
=
102.
68
×
25=
68
*
25
=
1’700.
68
×
40=
40
=
2’720.
(12
3
)–=
12
™
3
™
4
@•=
6.447419591
√
49 –
4
√
81 =
⁄
49
-
4
@$
81
=
4.
3
√
27 =
@#
27
=
3.
4! =
4
@!=
24.
10
P
3
=
10
@q
3
=
720.
5
C
2
=
5
@Q
2
=
10.
500
×
25%=
500
*
25
@%
125.
8
3
=
8
÷=
512.
120
÷
400=?%
120
/
400
@%
30.
CALCULATION EXAMPLES
CONTOH-CONTOH PENGHITUNGAN
CÁC VÍ DU PHÉP TÍNH
EL-509WM
EL-509WS
79–59=
79
-
59
=
20.
56–59=
56
=
–3.
56
÷
8=
56
/
8
=
7.
92
÷
8=
92
=
11.5
500+(500
×
25%)=
500
+
25
@%
625.
400–(400
×
30%)=
400
-
30
@%
280.
π
2
π
2
θ
= sin
–1
x
,
θ
= tan
–1
x
θ
= cos
–1
x
DEG
–90
≤
θ
≤
90
0
≤
θ
≤
180
RAD
– —
≤
θ
≤
—
0
≤
θ
≤
π
GRAD
–100
≤
θ
≤
100
0
≤
θ
≤
200
•
•
•
•
g
90
°→
[rad]
ª
90
@g
1.570796327
→
[g]
@g
100.
→
[
°
]
@g
90.
sin
–1
0.8 = [
°
]
@S
0.8
=
53.13010235
→
[rad]
@g
0.927295218
→
[g]
@g
59.03344706
→
[
°
]
@g
53.13010235
KRO;:?
ª
8
*
2
OM
16.
24
÷
(8
×
2)=
24
/KM=
1.5
(8
×
2)
×
5=
KM*
5
=
80.
ª
56
OA
56.
B=68
A=56
68
OB
68.
A
÷
2+B
×
4=
KA/
2
+
KB*
4
=
300.
ªOM
0.
$150
×
3:M
1
150
*
3
;
450.
+)$250:M
2
=M
1
+250
250
;
250.
–)M
2
×
5%
R
M
*
5
@
%
35.
M
@:RM
665.
$1= ¥110
110
OY
110.
¥26,510=$?
26510
/RY=
241.
$2,750=¥?
2750
*RY=
302’500.
r = 3cm
3
OY
3.
π
r
2
= ?
VKYL=
(r
→
Y)
28.27433388
24
/(
4
+
6
)
24 = 2.4...(A)
=
2.4
4+6
3
*K?+
60
/
3
×
(A)+60
÷
(A)=
K?=
32.2
\|
ª
3
\
1
\
2
+
4
\
3
=
4
l
5
l
6
*
→
[a.xxx]
\
4.833333333
→
[d/c]
@|
29
l
6
@¡
2
\
3
=
4.641588834
(
2
™
3
)\
(
3
™
4
)=
12
l
23
1
2
4
3
3– + – = [a–]
b
c
10 =
2
3
7
\
5
™
5
=
16807
l
3125
1
\
8
™
1
\
3
1
o
2
o
3
\
2
=
1
l
2
⁄
64
\
225
=
ª
7
O A
8
l
15
8
l
81
– =
64
225
– =
2
3
3
4
(
–
)
=
7
5
5
1.2
\
2.3
=
=
1
E
3
\
2
E
3
=
=
1.2
2.3
(
–
–
)
=
1
8
1
3
êûîìíãâ†ä
àá
DEC(25)
→
BIN
ª@í
25
@ê
11001
b
HEX(1AC)
@ì
1AC
→
BIN
@ê
110101100
b
→
PEN
@û
3203
P
→
OCT
@î
654
0
→
DEC
@í
428.
BIN(1010–100)
@ê(
1010
-
100
)
×
11 =
*
11
=
10010
b
BIN(111)
→
NEG
ã
111
=
1111111001
b
HEX(1FF)+
@ì
1FF
@î+
OCT(512)=
512
=
1511
0
HEX(?)
@ì
349
H
2FEC–
ªOM@ì
2FEC
-
2C9E=(A)
2C9E
;
34E
H
+)2000–
2000
-
1901=(B)
1901
;
6FF
H
(C)
RM
A4d
H
1011 AND
ª@ê
1011
†
101 = (BIN)
101
=
1
b
5A OR C3 = (HEX)
@ì
5A
ä
C3
=
db
H
NOT 10110 =
@êâ
10110
=
1111101001
b
(BIN)
24 XOR 4 = (OCT)
@î
24
à
4
=
20
0
B3 XNOR
@ì
B3
á
2D = (HEX)
2D
=
FFFFFFFF61
H
→
DEC
@í
–159.
o_
12
°
39’18.05”
ª
12
o
39
o
18.05
→
[10]
@_
12.65501389
123.678
123.678
@_
123
°
40’40.8”
→
[60]
3h
3
o
30
o
45
+
6
o
6h45m36s = [60]
45
o
36
=
10
°
16’21”
3h45m –
3
A = 7
o
45
-
1.69
=
1.69h = [60]
@_
2
°
3’36”
1234
°
56’12” +
0
°
0’34.567” = [60]
0
o
0
o
34.567
=
1234
o
56
o
12
+
1234
°
56’47”
sin62
°
12’24” = [10]
s
62
o
12
o
24
=
0.884635235
{},≠
ª
6
@,
4
@{
[
r ]
7.211102551
@≠
[
θ
]
33.69006753
@≠
[
r ]
7.211102551
14
@,
36
@}
[
x
]
11.32623792
@≠
[
y
]
8.228993532
@≠
[
x
]
11.32623792
→
x
= 6
r
=
y
= 4
θ
= [
°
]
→
r
= 14
x
=
θ
= 36[
°
]
y
=
m12
0.
12
&
41
k
1.
8
&
13
k
2.
5
&
2
k
3.
23
&
200
k
4.
15
&
71
k
5.
Ra
5.357506761
Rb
–3.120289663
R©
0.503334057
x
=10
→
y’
=?
10
@y
24.4880159
y
=22
→
x’
=?
22
@x
9.63201409
@≠
–3.432772026
@≠
9.63201409
x
y
12
41
8
13
5
2
23 200
15
71
k[]
30
m10
k
1.
0.
40
&
2
k
2.
50
k
3.
]]]
45
&
3
k
45.
]
]
60
k
3.
60.
DATA
30
40
40
50
DATA
30
45
45
45
60
↓
Σ
x
=
x
1
+
x
2
+ ··· +
x
n
Σ
x
2
=
x
1
2
+
x
2
2
+ ··· +
x
n
2
x =
Σ
x
n
Σ
xy
=
x
1
y
1
+
x
2
y
2
+ ··· +
x
n
y
n
Σ
y
=
y
1
+
y
2
+ ··· +
y
n
Σ
y
2
=
y
1
2
+
y
2
2
+ ··· +
y
n
2
y
=
Σ
y
n
σ
y
=
Σ
y
2
– ny
2
n
sy
=
Σ
y
2
– ny
2
n –
1
sx
=
Σ
x
2
– nx
2
n –
1
σ
x
=
Σ
x
2
– nx
2
n
DEG:
|
x
| < 10
10
(tan
x
: |
x
|
≠
90 (2n–1))*
sin
x
, cos
x
,
RAD:
|
x
| < –––
×
10
10
tan
x
(tan
x
: |
x
|
≠
– (2n–1))*
GRAD:
|
x
| < —–
×
10
10
(tan
x
: |
x
|
≠
100 (2n–1))*
sin
–1
x
, cos
–1
x
|
x
|
≤
1
tan
–1
x
,
3
¿
x
|
x
| < 10
100
In
x
, log
x
10
–99
≤
x
< 10
100
•
y
> 0:
–10
100
<
x
log
y
< 100
yx
•
y
= 0:
0 <
x
< 10
100
•
y
< 0:
x
= n
(0 < |
x
| < 1: – = 2n–1,
x
≠
0)*,
–10
100
<
x
log |
y
| < 100
•
y
> 0:
–10
100
< – log
y
< 100 (
x
≠
0)
x
¿
y
•
y
= 0:
0 <
x
< 10
100
•
y
< 0:
x
= 2n–1
(0 < |
x
| < 1 : – = n,
x
≠
0)*,
–10
100
< – log |
y
| < 100
e
x
–10
100
<
x
≤
230.2585092
10
x
–10
100
<
x
< 100
sinh
x
,
cosh
x
,
|
x
|
≤
230.2585092
tanh
x
sinh
–1
x
|
x
| < 10
50
cosh
–1
x
1
≤
x
< 10
50
tanh
–1
x
|
x
| < 1
x
x
2
3
|
x
| < 10
50
33
|
x
| < 2.15443469
×
10
¿
x
0
≤
x
< 10
100
x
–1
|
x
| < 10
100
(
x
≠
0)
n!
0
≤
n
≤
69*
0
≤
r
≤
n
≤
9999999999*
n
P
r
—– < 10
100
π
180
10
9
π
2
1
x
1
x
1
x
1
x
n!
(n-r)!
Function
Dynamic range
Julat dinamik
Gißi hÂn Ò∂ng
Fungsi
H‡m s”
PEN
:
2222222223
≤
x
≤
4444444444
0
≤
x
≤
2222222221
PEN
:
2222222223
≤
x
≤
4444444444
0
≤
x
≤
2222222222
BIN
:
1000000000
≤
x
≤
1111111111
0
≤
x
≤
111111111
NOT
OCT
:
4000000000
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX
:
FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FE
BIN
:
1000000001
≤
x
≤
1111111111
0
≤
x
≤
111111111
NEG
OCT
:
4000000001
≤
x
≤
7777777777
0
≤
x
≤
3777777777
HEX
:
FDABF41C01
≤
x
≤
FFFFFFFFFF
0
≤
x
≤
2540BE3FF
k&~£pnzw^
¢PZWvrab©
xy≠ƒ«»√
m10
0.
95
k
1.
80
k
2.
k
3.
75
&
3
k
4.
50
k
5.
R~
75.71428571
Rp
12.37179148
Rz
530.
Rw
41’200.
R£
13.3630621
L=
178.5714286
64.43210706
m11
0.
2
&
5
k
1.
k
2.
12
&
24
k
3.
21
&
40
&
3
k
4.
15
&
25
k
5.
Ra
1.050261097
Rb
1.826044386
Rr
0.995176343
R£
8.541216597
R¢
15.67223812
x
=3
→
y
’=?
3
@y
6.528394256
y
=46
→
x
’=?
46
@x
24.61590706
@ƒ
60
@√)=
0.102012
@»
0.5
±)=
0.691463
DATA
95
80
80
75
75
75
50
x
=
σ
x
=
Rn
7.
n
=
Σ
x
=
Σ
x
2
=
sx
=
sx
2
=
x
y
2
5
2
5
12
24
21
40
21
40
21
40
15
25
—
×
10+50=
( 95–
x
)
sx
(
95
-K~)
/K£
*
10
+
50
=
* n, r: integer / / integer /
s” nguyÍn
1
l
2
=
1
×
10
3
2
×
10
3
4
\K
A
=
4
l
7
=
4
A
0
°
31’1.5”
=
1
°
2’3”
2
1.25
+
2
\
5
=
1.65
7.
\
1
l
13
l
20
1.65
ª
1.65
=
1.65
→
[a–]
\
1
l
13
l
20
→
[d/c]
@|
33
l
20
→
[a.xxx]
\
1.65
*
4
l
5
l
6 =4—
5
6
1.25 + – = [a.xxx]
2
5
→
[a–]
b
c
b
c
j”
5
÷
9=ANS
ª”01
ANS
×
9=
5
/
9
=
0.6
[FIX,TAB=1]
*
9
=
*
1
5.0
5
/
9
=@j
0.6
*
9
=
*
2
5.4
”3
*
1
5.5555555555555
×
10
–1
×
9
*
2
0.6
×
9
X2 =
N2 =
X3 =
• • • •
1
7
1
6
5
7
π
4
sutSUTVGh
HIle¡•L÷⁄
™$#!qQ%
sin60[
°
]=
ªs
60
=
0.866025403
Gu
(V/
4
cos–[rad]=
)=
0.707106781
tan
–1
1=[g]
G@T
1
=
50.
G
(cosh 1.5 +
ª(hu
1.5
+h
sinh 1.5)
2
=
s
1.5
)L=
20.08553692
@Ht(
5
tanh
–1
– =
/
7
)=
0.895879734
ln 20 =
I
20
=
2.995732274
log 50 =
l
50
=
1.698970004
e
3
=
@e
3
=
20.08553692
10
1.7
=
@¡
1.7
=
50.11872336
– + – =
6
@•+
7
@
•=
0.309523809
8
–2
– 3
4
×
5
2
=
8
™
±
2
-
3
™
4
*
5
L=
–2’024.984375
• • • •
6+4=ANS
ª
6
+
4
=
10.
ANS+5
+
5
=
15.
8
×
2=ANS
8
*
2
=
16.
ANS
2
L=
256.
44+37=ANS
44
+
37
=
81.
√
ANS=
⁄=
9.
x
= 60
→
P(t) ?
t = –0.5
→
R(t) ?
t = ––––
x – x
σ
x
Standardization conversion formula
Rumus penukaran pemiawaian
CÙng thŸc biân «∞i chuƒn hÛa
m
(2-VLE)
m20
2
x
+ 3
y
= 4
2
®
3
®
4
®
5
x
+ 6
y
= 7
5
®
6
®
7
x
= ?
®
[
x
]
–1.
y
= ?
®
[
y
]
2.
det(D) = ?
®
[det(D)]
–3.
m
(3-VLE)
m21
x
+
y
–
z
= 9
1
®
1
®
1
±®
9
®
6
x
+ 6
y
–
z
= 17
6
®
6
®
1
±®
17
®
14
x
– 7
y
+ 2
z
= 42
14
®
7
±®
2
®
42
x
= ?
®
[
x
]
3.238095238
y
= ?
®
[
y
]
–1.638095238
z
= ?
®
[
z
]
–7.4
det(D) = ?
®
[det(D)]
105.
m
(QUAD, CUBIC)
m22
3
x
2
+ 4
x
– 95 = 0
3
®
4
®±
95
x
1 = ?
®
5.
x
2 = ?
®
–6.333333333
@®
5.
m23
5
x
3
+ 4
x
2
+ 3
x
+ 7 = 0
5
®
4
®
3
®
7
x
1 = ?
®
–1.233600307
i
x
2 = ?
®
0.216800153
i
@≠
+
1.043018296
i
x
3 = ?
®
0.216800153
i
@≠
–
1.043018296
i
→
DEC
DEC
:
|
x
|
≤
9999999999
→
BIN
BIN
:
1000000000
≤
x
≤
1111111111
→
PEN
→
OCT
0
≤
x
≤
111111111
PEN
:
2222222223
≤
x
≤
4444444444
0
≤
x
≤
2222222222
→
HEX
OCT
:
4000000000
≤
x
≤
7777777777
AND
0
≤
x
≤
3777777777
OR
HEX
:
FDABF41C01
≤
x
≤
FFFFFFFFFF
XOR
0
≤
x
≤
2540BE3FF
XNOR
0
≤
r
≤
n
≤
9999999999*
0
≤
r
≤
69
n
C
r
—– < 10
100
↔
DEG, D
°
M’S
0
°
0’0.00001”
≤
|
x
| < 10000
°
x
,
y
→
r
,
θ
√
x
2
+ y
2
< 10
100
0
≤
r
< 10
100
r
,
θ
→
x
,
y
DEG:
|
θ
| < 10
10
RAD:
|
θ
| < —–
×
10
10
GRAD :
|
θ
| < ––
×
10
10
DEG
→
RAD, GRAD
→
DEG: |
x
| < 10
100
DRG
|
RAD
→
GRAD: |
x
| < –
×
10
98
n!
(n-r)!
π
180
10
9
π
2
• • • •
• • • •
a
1
x
+
b
1
y
=
c
1
a
2
x
+
b
2
y
=
c
2
a
1
b
1
a
2
b
2
D =
a
1
x
+
b
1
y
+
c
1
z
=
d
1
a
2
x
+
b
2
y
+
c
2
z
=
d
2
a
3
x
+
b
3
y
+
c
3
z
=
d
3
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
D =
This equipment complies with the requirements of Directive
89/336/EEC as amended by 93/68/EEC.
Dieses Gerät entspricht den Anforderungen der EG-Richtlinie
89/336/EWG mit Änderung 93/68/EWG.
Ce matériel répond aux exigences contenues dans la directive
89/336/CEE modifiée par la directive 93/68/CEE.
Dit apparaat voldoet aan de eisen van de richtlijn 89/336/EEG,
gewijzigd door 93/68/EEG.
Dette udstyr overholder kravene i direktiv nr. 89/336/EEC med tillæg
nr. 93/68/EEC.
Quest’ apparecchio è conforme ai requisiti della direttiva
89/336/EEC come emendata dalla direttiva 93/68/EEC.
89/336/,
93/68/.
Este equipamento obedece às exigências da directiva 89/336/CEE na
sua versão corrigida pela directiva 93/68/CEE.
Este aparato satisface las exigencias de la Directiva 89/336/CEE
modificada por medio de la 93/68/CEE.
Denna utrustning uppfyller kraven enligt riktlinjen 89/336/EEC så
som kompletteras av 93/68/EEC.
Dette produktet oppfyller betingelsene i direktivet 89/336/EEC i
endringen 93/68/EEC.
Tämä laite täyttää direktiivin 89/336/EEC vaatimukset, jota on
muutettu direktiivillä 93/68/EEC.
чÌÌÓ ÛÒÚÓÈÒÚ‚Ó ÒÓÓÚ‚ÂÚÒÚ‚ÛÂÚ Ú·ӂ‡ÌËflÏ ‰ËÂÍÚË‚˚
89/336/EEC Ò Û˜ÂÚÓÏ ÔÓÔ‡‚ÓÍ 93/68/EEC.
Ez a készülék megfelel a 89/336/EGK sz. EK-irányelvben és annak
93/68/EGK sz. módosításában foglalt követelményeknek.
Tento p
fi
ístroj vyhovuje poÏadavkÛm smûrnice 89/336/EEC v platném
znûní 93/68/EEC.
In Europe:
ENGLISH