background image

 
 

 

© by SEMIKRON  /  2019-07-23  /  Technical Explanation  /  SKYPER

®

 42 LJ R 

PROMGT.1026/ Rev.7/ Template Technical Explanation

 

Page 1/35 

1.

 

Introduction ............................................................................................................................... 2

 

2.

 

Block Diagram and Application Example ........................................................................................ 3

 

2.1

 

Block diagram ....................................................................................................................... 3

 

2.2

 

Application example .............................................................................................................. 4

 

2.2.1

 

Primary side ................................................................................................................... 4

 

2.2.2

 

Secondary side ............................................................................................................... 5

 

3.

 

Dimensions and mechanical precautions ........................................................................................ 8

 

3.1

 

Dimensions .......................................................................................................................... 8

 

3.2

 

Plug-in connection ................................................................................................................. 8

 

3.3

 

Support post......................................................................................................................... 9

 

3.4

 

Solder connection .................................................................................................................. 9

 

3.5

 

Handling instructions ........................................................................................................... 10

 

4.

 

Interface Description................................................................................................................. 11

 

4.1

 

Footprint ............................................................................................................................ 11

 

4.2

 

Pin assignment ................................................................................................................... 11

 

4.2.1

 

Pin assignment of pin header X10 | Primary side ............................................................... 11

 

4.2.2

 

Pin assignment of pin header X100 | Secondary side | TOP ................................................ 12

 

4.2.3

 

Pin assignment of pin header X200 | Secondary side | BOT ................................................ 12

 

4.3

 

Power Supply | Primary side ................................................................................................. 13

 

4.4

 

Gate drive signals | Primary side ........................................................................................... 14

 

4.5

 

Filter selection, jitter and propagation delay time | Primary side ............................................... 15

 

4.6

 

Error output | Primary side ................................................................................................... 15

 

4.7

 

Error input | Primary side ..................................................................................................... 16

 

4.8

 

Error mode selection | Primary side ....................................................................................... 17

 

4.9

 

External error input | Secondary side ..................................................................................... 17

 

4.10

 

Gate resistors | Secondary side ............................................................................................. 19

 

4.11

 

External boost capacitors | Secondary side ............................................................................. 20

 

5.

 

Protection features ................................................................................................................... 21

 

5.1

 

Failure management ............................................................................................................ 21

 

5.2

 

Dead time and Interlock ....................................................................................................... 23

 

5.3

 

Short pulse suppression (SPS) .............................................................................................. 24

 

5.4

 

Undervoltage lockout (UVLO) ................................................................................................ 24

 

5.5

 

Dynamic short circuit protection by V

CEsat

-monitoring (DSCP) .................................................... 25

 

5.5.1

 

DSCP | Functional description ......................................................................................... 26

 

5.5.2

 

DSCP | Calculation hints ................................................................................................ 27

 

5.6

 

Active clamping................................................................................................................... 27

 

5.7

 

Soft Off .............................................................................................................................. 28

 

5.8

 

Safe short circuit turn-off in multilevel topology ...................................................................... 29

 

6.

 

Electrical characteristic .............................................................................................................. 29

 

7.

 

Product Qualification ................................................................................................................. 30

 

8.

 

Environmental conditions .......................................................................................................... 31

 

9.

 

Marking ................................................................................................................................... 32

 

10.

 

Change history ......................................................................................................................... 33 

Technical Explanation 

SKYPER

®

  

42 LJ R 

Revision: 

12 

Issue date: 

2019-07-23 

Prepared by: 

Niklas Hofstötter 

Reviewed by: 

Daniel Obernöder 

Approved by: 

Marco Honsberg 

Keyword: IGBT driver core 

Summary of Contents for SKYPER 42 LJ R

Page 1: ...ter and propagation delay time Primary side 15 4 6 Error output Primary side 15 4 7 Error input Primary side 16 4 8 Error mode selection Primary side 17 4 9 External error input Secondary side 17 4 10 Gate resistors Secondary side 19 4 11 External boost capacitors Secondary side 20 5 Protection features 21 5 1 Failure management 21 5 2 Dead time and Interlock 23 5 3 Short pulse suppression SPS 24 ...

Page 2: ...ion for operating voltages of up to 1200V The interaction of the well coordinated functionality with the integrated safety functions makes the SKYPER 42 LJ R to a reliable control for power semiconductor modules in standard multilevel or parallel operation Figure 1 SKYPER 42 LJ R KEY FEATURES Two output channels 2 75W output power per channel 3 ns jitter per channel Fully isolated secondary side p...

Page 3: ...ck Signal Processing Dead Time Generation Filter Management UVLO Error Management Gate Drive Management Power Supply Management Error Management Error Management Gate Drive Management UVLO DSCP DSCP UVLO nERR_IN_TOP nERR_IN_BOT PWR_VS_P_BOT PWR_GND_BOT PWR_VS_N_BOT PWR_VS_P_TOP PWR_GND_TOP PWR_VS_N_TOP BOT_ON BOT_OFF BOT_SOFTOFF CLMP_IN_BOT VCE_IN_BOT CFG_VCE_BOT TOP_ON TOP_OFF TOP_SOFTOFF CLMP_IN...

Page 4: ...pplication example Primary side Recommended values Component Value Remark CTOP_IN CBOT_IN 1nF Optional filter capacitors suppressing high frequency signals For further information please refer to 3 CBST Optional boost capacitor dimensioning according to chapter 4 11 RTOP_IN RBOT_IN 10kΩ Optional pull down resistors for steady off state of the corresponding output if no input signal is applied RnER...

Page 5: ...off _TOP R GE_TOP C GE_TOP VCE_IN_BOT X200 02 BOT_ON X200 05 BOT_OFF X200 06 BOT_SOFTOFF X200 09 PWR_GND_BOT X200 08 RG on _BOT RG softoff _BOT RVCE_BOT DVCE_BOT D GE_BOT T2 RG off _BOT R GE_BOT C GE_BOT DC PWR_VS_P_TOP X100 03 nERR_IN_TOP X100 04 CFG_VCE_TOP X100 01 CLMP_IN_TOP X100 07 PWR_GND_TOP X100 08 PWR_VS_N_TOP X100 10 C BST N _TOP R 2_CFG_TOP R 1_CFG_TOP C CFG_TOP C BST P _TOP PWR_VS_P_BO...

Page 6: ...E_TOP DVCE_BOT Optional high voltage diode for VCE monitoring mandatory if DSCP is used Dimensioning according to chapter 5 5 R1_CFG_TOP R1_CFG_BOT 10kΩ Optional resistors to adjust the trip level VCE ref of the dynamic short circuit protection necessary if DCSP is used Dimensioning according to chapter 5 5 R2_CFG_TOP R2_CFG_BOT Optional resistors to adjust the trip level VCE ref of the dynamic sh...

Page 7: ...uration via pins CFG_VCE_TOP and CFG_VCE_BOT 5 5 Dead time 2µs typical value Selected by connecting pin CFG_IDT to pin PWR_GND 5 2 Error mode Both output channel switch immediately into off state in case of any error condition Selected by connecting pin CFG_ERR to pin PWR_GND 5 1 Error propagation delay time 700ns typical value Fixed value 5 1 External error HALT Disabled at both output channels D...

Page 8: ...rd pin headers The primary side and the two secondary side plug in connectors are 10 pin dual row 2 54mm pin headers For a secure mechanical connection of the driver it is essential that the pin headers can be fully supported by the female mating connectors SEMIKRON recommends the use of the following female mating connector Description Shape Manufacturer Art no female RM2 54 10p SMD 2ROW Suyin 25...

Page 9: ...ion at least Example of a support post Description Shape Manufacturer Art no Nylon support post Dual lock Richco DLMSPM 8 01 12mm Figure 6 SKYPER 42 LJ R Support post mounting holes for support posts draft of a supported driver on an adapter board 3 4 Solder connection The SKYPER 42 LJ R driver core can be soldered directly onto an adapter or control board It should be noted that if the driver is ...

Page 10: ...its original packaging immediately before mounting When mounting the driver it has to be ensured that the work is done in an ESD protected workplace Persons working with the driver have to wear ESD wristbands overalls and shoes If tools are used for mounting those must comply with ESD standards When handling the driver do not pick up the driver at the transformers The driver MUST be handled at the...

Page 11: ...k dead time configuration 15V logic 150kΩ pull up LOW 2µs interlock dead time HIGH No interlock dead time X10 03 nERR_OUT Error output Open collector output max 18V 15mA external pull up resistor needed LOW Error HIGH No error X10 04 nERR_IN Error input 15V logic inverted 150kΩ 10nF pull up LOW External error HIGH No external error X10 05 CFG_ERR Error behaviour configuration in case of any error ...

Page 12: ...or External gate resistor needed in consideration of Iout avg Iout peak VG on X100 06 TOP_OFF Off signal path to TOP semiconductor External gate resistor needed in consideration of Iout avg Iout peak VG off X100 07 CLMP_IN_TOP VCE clamping input 150kΩ 0 01nF pull down In case of activated TOP_OFF LOW TOP_OFF equal to VG off HIGH TOP_OFF floating X100 08 PWR_GND_TOP Ground potential for power suppl...

Page 13: ...ial for gate voltages emitter source of power semiconductor X200 09 BOT_SOFTOFF SoftOff signal path to BOT semiconductor External gate resistor needed X200 10 PWR_VS_N_BOT Power supply output negative voltage Equal to VG off external buffer capacitors can be connected 4 3 Power Supply Primary side For a proper operation of the SKYPER 42 LJ R driver core a power supply of at least 15W 1A shall be c...

Page 14: ...tputs Further information to the short pulse suppression can be found in chapter 5 3 Figure 10 SKYPER 42 LJ R Primary side Gate drive signals When using the driver in environments with high levels of electromagnetic noise it is recommended to connect a filter capacitor CTOP_IN CBOT_IN of several hundred pico Farads as close as possible to the signal inputs of the driver Please note that these capa...

Page 15: ...set to inactive The dead time generator is inactive if either the interlock feature is disabled via the CFG_IDT pin or the dead time of the applied pulse pattern is longer than 2µs A detailed description of the interlock function and the dead time generation could be found in chapter 5 2 CFG_FLT CFG_IDT Setting Filter time Delay time Jitter HIGH HIGH LOW Digital filter 390ns 830ns 12 5ns LOW HIGH ...

Page 16: ...Additionally all CFG_ERR configuration pins have to be connected to ground potential as shown in Figure 12 In this configuration any driver connected to the HALT line can force the outputs of all connected drivers to off state and locks them when the driver pulls its nERR_OUT output to low level If a specific turn off sequence is required as it is common practice in NPC multilevel applications the...

Page 17: ...he primary or secondary side the driver activates the standard turn off or the soft off path as described above Further information related to the primary and secondary error events as well as on the error reset conditions can be found in chapter 5 1 Parameter Min Typ Max Threshold high 11 V Threshold low 7 5 V 4 9 External error input Secondary side Each secondary side of the driver provides an e...

Page 18: ...onent Value Remark C1 1nF C2 100nF C3 1µF R1 30 1kΩ R2 15kΩ R3 30 1kΩ R4 30 1kΩ RCFG temp The value of the RCFG temp has to be determined considering the resistance characteristic of the connected thermistor and the desired trip level Parameter Min Typ Max Threshold high 13 V Threshold low 2 V R 1 SKYPER 42 LJ R PWR_VS_P_TOP X100 03 nERR_IN_TOP X100 04 PWR_GND_TOP X100 08 PWR_VS_N_TOP X100 10 ϑ R2...

Page 19: ...ers e g IGBT technology diode switching frequency losses application layout inductivity stray inductance DC link voltage and driver capability The complete design of an application must be viewed as a whole with due considering of the above mentioned parameters at least Interactive effects within the whole application must be evaluated and accommodated 4 The minimum value of the gate resistors RG ...

Page 20: ...are recommended if the connected gate charge is larger than 2 5µC These capacitors has to be placed as close as possible to the driver as shown in Figure 15 Figure 15 SKYPER 42 LJ R Secondary side Boost capacitors The external boost capacitors can be calculated by following equation 𝐶𝐵𝑆𝑇 𝑃 𝐶𝐵𝑆𝑇 𝑁 4 µ𝐹 µ𝐶 𝑄𝐺 10µ𝐹 𝑓𝑜𝑟 2 5µ𝐶 𝑄𝐺 20µ𝐶 Please note when assembling boost capacitors at the secondary side a...

Page 21: ...off signal at the corresponding input Locked immediately OFF locked until reset Soft Off affected channel Standard not affected channel LOW LOW immediately OFF and locked immediately until reset Short circuit detection DSCP secondary side HIGH LOW immediately OFF with next turn off signal at the corresponding input Locked immediately OFF locked until reset Soft Off affected channel Standard not af...

Page 22: ...behaviour prevents deadlock situations if several drivers are using the bi directional HALT feature as described in chapter 4 7 The behaviour of the driver on an error event is also shown in Figure 16 The red dotted lines mark the behaviour of the driver if the error configuration pin CFG_ERR is connected to PWR_VS Figure 16 SKYPER 42 LJ R Behaviour on error event t 30µs 9µs VIH VIL TOP_IN X10 07 ...

Page 23: ...As long as the dead time of 2µs has not been elapsed the driver locks the other output If the pulse pattern generated by the customer s controller also includes a dead time the resulting system dead time will be determined by either the controller or the driver depending on whichever dead time is longer The SKYPER 42 LJ R does not add the internal generated dead time to the dead time of the pulse ...

Page 24: ...low the shutdown threshold levels the driver enters into error state The same applies when a negative gate voltage exceeds the shutdown threshold level Entered into error state the driver executes its error routine as described in chapter 5 1 The error condition is no longer present when the supply voltage and both positive gate voltages have exceeded the non error threshold level and both negativ...

Page 25: ...ection SEMIKRON recommends to set the DSCP trip level to value of 7V to 9V voltage at the CFG_VCE pin to prevent unwanted accidently triggered desaturation events due to a too small gap between the saturation voltage of the IGBT and the trigger level of the DSCP feature Figure 18 SKYPER 42 LJ R Recommended DSCP circuitry Recommended values Component Value Remark C1 1nF Optional filter capacitors s...

Page 26: ...N pin follows the collector emitter voltage of the semiconductor with an offset caused by the forward current IF of the high voltage diode DVCE multiplied by the resistance of RVCE plus the voltage drop VF of the high voltage diode The DSCP feature is active from the moment the voltage VCE ref at the CFG_VCE pin is below 10V The time elapsed from initiating the turn on process of the semiconductor...

Page 27: ... 𝑅1 𝑅2 𝑅𝑉𝐶𝐸 5 6 Active clamping The driver offers the possibility of reducing over voltages during switching by using the active clamping feature Figure 21 shows an example of an active clamping circuitry based on Zener diodes The voltage level when the clamping starts is determined by the breakdown voltage of the Zener diodes DCLMP If during a switch off of the IGBT the collector gate voltage VCG...

Page 28: ...ent is detected on the secondary side as described in chapter 5 1 Switching off a semiconductor via the soft off path aims to reduce the switching speed of the semiconductor and hence the over voltage caused by the di dt through the system s stray inductances is decreased Recommendation Usually the Soft Off resistor is roughly 10 times as high as the standard off resistor However the proper value ...

Page 29: ... features ensures that the SKYPER 42 LJ R allows the control of the semiconductors in multilevel applications And thanks to the advanced error management provisions have been taken to allow the application controller to safely handle even short circuit conditions Detailed information using the SKYPER 42 LJ R driver core in multilevel applications can be found in the Application Note AN19 001 Gate ...

Page 30: ...ion 4 0 kV AC rms 60s EN50178 TC Thermal Cycling 1000 cycles a 1h Tstgmax Tstgmin IEC60068 2 14 TH Temperature Humidity 85 C 85 RH 1000h IEC60068 2 67 TS High Low Temp Storage 105 C 1000h 40 C 1000h IEC60068 2 2 1 BST Burst Power terminals 4kV Control terminals 4kV EN61000 4 4 CC Climate Change 15 C to 85 C 10 to 85 10 cycles a 8h EN60068 2 30 HT High Temp Operation 95 C 500h full load SEMIKRON ES...

Page 31: ...imate class 3K3 IEC 60721 3 3 Environmental Condition Norm Standard Operating storage temperature 40 85 C High humidity 85 C 85 Flammability UL94 V0 Heavy flammable materials only RoHS WEEE China RoHS EMC Condition Norm Standard Parameter ESD DIN EN 61000 4 2 DIN EN 61800 3 6 kV contact discharge 8 kV air discharge Burst DIN EN 61000 4 4 DIN EN 61800 3 2kV on adaptor board for signal lines Immunit...

Page 32: ...hnical Explanation SKYPER 42 LJ R PROMGT 1026 Rev 7 Template Technical Explanation Page 32 35 9 Marking Figure 23 SKYPER 42 LJ R Label Every driver core is marked with a data matrix label The marking contains the following items ...

Page 33: ... 05 15 Differences sample to series 04 2012 09 21 Removal cover update data sheet details sample series 05 2013 09 30 Update primary side ASIC features 06 2014 04 02 Update error management label 07 2014 07 28 Timing error management 08 2014 09 17 Change to status series release 09 2017 03 07 Update error diagram Vce values clamping 10 2017 09 13 Update creepage clearance 11 2017 10 17 Update hand...

Page 34: ...YPER 42 LJ R Dynamic short circuit protection 26 Figure 20 SKYPER 42 LJ R Active clamping 27 Figure 21 SKYPER 42 LJ R Application example for active clamping 28 Figure 22 SKYPER 42 LJ R Maximum switching frequency 29 Figure 23 SKYPER 42 LJ R Label 32 Table 1 SKYPER 42 LJ R Application example Primary side Recommended values 4 Table 2 SKYPER 42 LJ R Application example Secondary side Recommended va...

Page 35: ...ON in a written document signed by authorized representatives of SEMIKRON SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury No representation or warranty is given and no liability is assumed with respect to the accuracy completeness and or use of any information herein ...

Reviews: