[29] P. H´enon, F. Pellegrini, P. Ramet, J. Roman, and Y. Saad. High performance
complete and incomplete factorizations for very large sparse systems by using
scotch
and
pastix
softwares. In
Proc. 11
th
SIAM Conference on Parallel
Processing for Scientific Computing, San Francisco, USA
, February 2004.
[30] J. Hopcroft and R. Karp. An
n
5
/
2
algorithm for maximum matchings in bi-
partite graphs.
SIAM Journal of Computing
, 2(4):225–231, December 1973.
[31] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-
titioning irregular graphs. Technical Report 95-035, University of Minnesota,
June 1995.
[32] G. Karypis and V. Kumar.
MeTiS
– unstructured graph partitioning and
sparse matrix ordering system – version 2.0. Technical report, University of
Minnesota, June 1995.
[33] G. Karypis and V. Kumar. Multilevel
k
-way partitioning scheme for irregular
graphs. Technical Report 95-064, University of Minnesota, August 1995.
[34] G. Karypis and V. Kumar.
MeTiS
– A Software Package for Partitioning
Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Or-
derings of Sparse Matrices – Version 4.0
. University of Minnesota, September
1998.
[35] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitionning
graphs.
BELL System Technical Journal
, pages 291–307, February 1970.
[36] M. Laguna, T. A. Feo, and H. C. Elrod. A greedy randomized adaptative
search procedure for the two-partition problem.
Operations Research
, pages
677–687, July 1994.
[37] C. Leiserson and J. Lewis. Orderings for parallel sparse symmetric factoriza-
tion. In
Third SIAM Conference on Parallel Processing for Scientific Comput-
ing
, 1987.
[38] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
SIAM Journal of Numerical Analysis
, 16(2):346–358, April 1979.
[39] J. W.-H. Liu. Modification of the minimum-degree algorithm by multiple elim-
ination.
ACM Trans. Math. Software
, 11(2):141–153, 1985.
[40] SGI Open Inventor.
Available from
http://oss.sgi.com/projects/
inventor/
.
[41] F. Pellegrini. Static mapping by dual recursive bipartitioning of process and
architecture graphs. In
Proc. SHPCC’94, Knoxville
, pages 486–493. IEEE,
May 1994.
[42] F. Pellegrini. A parallelisable multi-level banded diffusion scheme for comput-
ing balanced partitions with smooth boundaries. In
Proc. EuroPar, Rennes
,
LNCS 4641, pages 191–200, August 2007.
[43] F. Pellegrini.
PT-Scotch 5.1
User’s guide. Technical report, LaBRI, Uni-
versit´e Bordeaux I, August 2008.
Available from
http://www.labri.fr/
~pelegrin/scotch/
.
135