P
M1
3
0
Powermeters
Reference Guide
Modbus
Communications
Protoco
l
BG0
310
Rev. A
1
Page 1: ...PM130 Powermeters Reference Guide Modbus Communications Protocol BG0310 Rev A1 ...
Page 2: ...SERIES PM130 POWERMETERS COMMUNICATIONS Modbus Communications Protocol REFERENCE GUIDE ...
Page 3: ...r further information regarding a particular installation operation or maintenance of equipment contact the manufacturer or your local representative or distributor This book is copyrighted No part of this book may be reproduced stored in a retrieval system or transmitted in any form or by any means electronic mechanical photocopying recording or otherwise without the prior written permission of t...
Page 4: ...st 8 3 6 Exception Responses 9 4 PROTOCOL IMPLEMENTATION 10 4 1 Modbus Register Addresses 10 4 2 Data Formats 10 4 2 1 16 bit Integer Format 10 4 2 2 32 bit Modulo 10000 Format 11 4 2 3 32 bit Long Integer Format 11 4 3 User Assignable Registers 11 5 POWERMETER REGISTERS DESCRIPTION 13 5 1 Basic Data Registers 13 5 2 Basic Setup 14 5 3 User Selectable Options Setup 15 5 4 Communications Setup 16 5...
Page 5: ...wire connection schemes the unbalanced current and phase readings for power factor active power and reactive power will be zeros because they have no meaning Only the total three phase power values can be used Most of the instrument advanced features are configured using multiple setup parameters that can be accessed in some contiguous registers When writing the setup registers it is recommended t...
Page 6: ...he maximum query and response message length is 256 bytes including check characters RTU Message Frame Format T1 T2 T3 Address Function Data CRC Check T1 T2 T3 8 bits 8 bits N 8 bits 16 bits 2 3 Address Field The address field contains a user assigned address 1 247 of the instrument that is to receive a message Address 0 is used in broadcast mode to transmit to all instruments broadcast mode is av...
Page 7: ...All arithmetic is performed modulo two no carries The device used to serialize the data for transmission will send the conventional LSB or right most bit of each character first In generating the CRC the first bit transmitted is defined as the MSB of the dividend For convenience and since there are no carries used in the arithmetic let s assume while computing the CRC that the MSB is on the right ...
Page 8: ...p to 125 contiguous registers from a single data table It can be used instead of function 03 Request Instrument Address Function 04 Starting Address Word Count Error Check 1 byte 1 byte 2 bytes 2 bytes 2 bytes Starting Address Address of the first register to be read Word Count The number of contiguous words to be read Response Instrument Address Function 04 Byte Count Data Word 1 Data Word N Erro...
Page 9: ...ing Address Word Count Error Check 1 byte 1 byte 2 bytes 1 word 2 bytes 3 5 Function 08 Loop back Communications Test The purpose of this request is to check the communications link between the specified instrument and PC Request Instrument Address Function 08 Diagnostic Code 0 Data Error Check 1 byte 1 byte 2 bytes 2 bytes 2 bytes Diagnostic Code Designates action to be taken in Loop back test Th...
Page 10: ...o 1 Exception Code Error Check 1 byte 1 byte 1 byte 2 byte Exception response codes 01 Illegal function 02 Illegal data address 03 Illegal data value 06 Busy rejected message The message was received without errors but the instrument is being programmed from the keypad only for requests accessing setup registers NOTE When the character framing parity or redundancy check detects a communication err...
Page 11: ...decimal pre scaling to pass fractional numbers in integer format Non scaled data The data will be presented exactly as retrieved by the communications program from the instrument The value range for unsigned data is 0 to 65535 for signed data the range is 32768 to 32767 LIN3 Linear Scaling This conversion maps the raw data received by the communications program in the range of 0 9999 onto the user...
Page 12: ...ta is 0 to 4 294 967 295 for signed data the range is 2 147 483 648 to 2 147 483 647 A 32 bit data can be transmitted without conversion as is or by using decimal pre scaling to transform fractional numbers to an integer format as described above see Decimal Scaling in Section 4 2 1 4 3 User Assignable Registers The PM130 contains the 120 user assignable registers in the address range of 0 to 119 ...
Page 13: ...c User definable data 119 119 c c c c depends on the mapped register Table 4 2 User Assignable Register Map Register contents Address Size byte Direction Range Register address for user data 0 120 2 R W 240 to 9999 Register address for user data 1 121 2 R W 240 to 9999 Register address for user data 2 122 2 R W 240 to 9999 Register address for user data 119 239 2 R W 240 to 9999 ...
Page 14: ...2 R 0 001 1 000 1 000 LIN3 Power factor L3 P 273 2 R 0 001 1 000 1 000 LIN3 Total power factor P 274 2 R 0 001 1 000 1 000 LIN3 Total kW P 275 2 R kW Pmax Pmax LIN3 Total kvar P 276 2 R kvar Pmax Pmax LIN3 Total kVA P 277 2 R kVA Pmax Pmax LIN3 Neutral current 278 2 R A 0 Imax LIN3 Frequency 279 2 R 0 01 Hz 45 00 65 00 LIN3 Maximum sliding window kW demand f E 280 2 R W kW Pmax Pmax LIN3 Accumulat...
Page 15: ... Imax 50 over range 1 5 CT primary current A Pmax Imax Vmax 3 1000 kW if wiring mode is 4LN3 or 3LN3 Pmax Imax Vmax 2 1000 kW if wiring mode is 4LL3 3OP2 3DIR2 3OP3 or 3LL3 d Positive readings of kvarh net e Negative readings of kvarh net f To get block interval demand readings specify the number of demand periods equal to 1 see Table 5 2 g When the 4LN3 or 3LN3 wiring mode is selected the voltage...
Page 16: ...gs 3OP3 3 wire open delta using 3 CTs 2 1 2 element 3LN3 4 wire WYE using 2 PTs 2 1 2 element line to neutral voltage readings 3LL3 4 wire WYE using 2 PTs 2 1 2 element line to line voltage readings d Synchronization of power demand interval can be made through communications using the Synchronize power demand interval command see Table 5 5 E available in the PM130E 5 3 User Selectable Options Set...
Page 17: ...l maximum demands 1 power demands E 2 volt ampere demands Reserved 3406 2 3407 Clear event time counters E 3408 2 W 0 all counters 1 4 counter 1 4 Clear Min Max log 3409 2 W 0 Reserved 3410 2 3419 Synchronize power demand interval E c 3420 2 W 0 c 1 If the power demand period is set to External Synchronization see Table 5 2 writing a zero to this location will simulate an external synchronization ...
Page 18: ...mber Description 0 6 Not used permanently set to 1 7 Relay status 8 15 Not used permanently set to 0 Bit meaning 0 relay operated 1 relay released Table 5 8 Instrument Options Options register Bit Description Options1 0 120V option 1 690V option 2 4 Reserved 5 150 current over range 6 8 Reserved 9 Relays option 10 15 Reserved Options 2 0 2 Number of relays 1 3 15 Reserved 5 7 Extended Status Table...
Page 19: ...t 13 status 13 Setpoint 14 status 14 Setpoint 15 status 15 Setpoint 16 status Bit meaning 0 setpoint is released 1 setpoint is operated Table 5 12 Log Status Bit Description 0 Reserved 1 New Min Max Log 2 15 Not used permanently set to 0 Bit meaning 0 no new logs 1 new log recorded the new log flag is reset when the user reads the first log record after the flag has been set Table 5 13 Setpoint Al...
Page 20: ...he default configuration The configuration corrupt bit may also be set as a result of the legal changes in the setup configuration since the instrument might implicitly change or clear other setups if they are affected by the changes made Hardware fault bits can be reset by writing zero to the self check alarm register The configuration corrupt status bit is also reset automatically when you chang...
Page 21: ... 7146 LIN3 13332 13333 3082 R kvar Pmax Pmax kvar L3 7147 LIN3 13334 13335 3083 R kvar Pmax Pmax kVA L1 7148 LIN3 13336 13337 3084 R kVA 0 Pmax kVA L2 7149 LIN3 13338 13339 3085 R kVA 0 Pmax kVA L3 7150 LIN3 13340 13341 3086 R kVA 0 Pmax Power factor L1 7151 LIN3 13342 13343 3087 R 0 001 1 000 1 000 Power factor L2 7152 LIN3 13344 13345 3088 R 0 001 1 000 1 000 Power factor L3 7153 LIN3 13346 1334...
Page 22: ...6 13977 4364 R kVA 0 Pmax kVA L2 7349 LIN3 13978 13979 4365 R kVA 0 Pmax kVA L3 7350 LIN3 13980 13981 4366 R kVA 0 Pmax Power factor L1 7351 LIN3 13982 13983 4367 R 0 001 1 000 1 000 Power factor L2 7352 LIN3 13984 13985 4368 R 0 001 1 000 1 000 Power factor L3 7353 LIN3 13986 13987 4369 R 0 001 1 000 1 000 Reserved 7354 13988 13989 4370 R 0 0 Reserved 7355 13990 13991 4371 R 0 0 Reserved 7356 139...
Page 23: ...Pmax Reserved 7548 14616 14617 5644 R 0 0 Reserved 7549 14618 14619 5645 R 0 0 Reserved 7550 14620 14621 5646 R 0 0 Accumulated kW demand import E 7551 LIN3 14622 14623 5647 R kW 0 Pmax Reserved 7552 14624 14625 5648 R 0 0 Accumulated kVA demand 7553 LIN3 14626 14627 5649 R kVA 0 Pmax Predicted sliding window kW demand 7554 LIN3 14628 14629 5650 R kW 0 Pmax Reserved 7555 14630 14631 5651 R 0 0 Pre...
Page 24: ...LIN3 17414 17415 11267 R A 0 Imax Current L2 P 8420 LIN3 17416 17417 11268 R A 0 Imax Current L3 P 8421 LIN3 17418 17419 11269 R A 0 Imax Minimum real time total values M P Total kW 8456 LIN3 17536 17537 11520 R kW Pmax Pmax Total kvar 8457 LIN3 17538 17539 11521 R kvar Pmax Pmax Total kVA 8458 LIN3 17540 17541 11522 R kVA 0 Pmax Total PF e 8459 LIN3 17542 17543 11523 R 0 001 0 1 000 Minimum real ...
Page 25: ...d 8864 18832 18833 14088 R 0 0 Max sliding window kW demand E 8865 LIN3 18834 18835 14089 R kW 0 Pmax Reserved 8866 18836 18837 14090 R 0 0 Max sliding window kVA demand E 8867 LIN3 18838 18839 14091 R kVA 0 Pmax c For the parameter limits see note c to Table 5 1 d The actual frequency range is 45 00 65 00 Hz e Absolute min max value lag or lead f The exported energy registers are read as positive...
Page 26: ...gh word is reserved for long parameters This register is always read as zero When written its value is ignored Limits indicated in Table 5 18 by a N A mark are read as zeros When writing they can be omitted or should be written as zeros When a setpoint action is directed to a relay allocated to output energy pulses an attempt to re allocate it for a setpoint will result in a negative response Tabl...
Page 27: ...igh volt demand L3 L31 P f 5634 2 V 0 Vmax LIN3 High ampere demand L1 5635 2 A 0 Imax LIN3 High ampere demand L2 5636 2 A 0 Imax LIN3 High ampere demand L3 5637 2 A 0 Imax LIN3 High block kW demand E 5638 2 kW 0 Pmax LIN3 High block kVA demand E 5640 2 kVA 0 Pmax LIN3 High sliding window kW demand E 5641 2 kW 0 Pmax LIN3 High sliding window kVA demand E 5643 2 kVA 0 Pmax LIN3 High accumulated kW d...
Page 28: ...ee Table 5 21 2892 2893 Table 5 21 Pulsing Setup Registers Parameter Offset Size byte Direction Range Output parameter ID 0 2 R W see Table 5 22 Number of unit hours per pulse 1 2 R W 1 9999 Table 5 22 Pulsing Output Parameters Pulsing parameter ID None 0 kWh import 1 kWh export 2 kvarh import 4 kvarh export 5 kvarh total absolute 6 kVAh total 7 5 11 Relay Operation Control These registers allow t...
Page 29: ...4269 Table 5 26 Min Max Log Window Registers Parameter Offset Size byte Direction Range Second 0 2 R 0 Minute 1 2 R 0 Hour 2 2 R 0 Day 3 2 R 0 Month 4 2 R 0 Year 5 2 R 0 Parameter value c 6 7 4 R see Table 5 15 c The Min Max parameter value can be read in one or two registers depending on the value type For the value length and conversion scales refer to Table 5 15 The time stamp is not available ...