background image

ISL81802EVAL3Z

2. PCB Layout Guidelines

R16UH0004EU0100 Rev.1.00

Page 5 of 19

Sep.15.20

 

2.

PCB Layout Guidelines 

Careful attention to Printed Circuit Board (PCB) layout requirements is necessary for successful implementation 
of an ISL81802 based DC/DC converter. The ISL81802 switches at a high frequency; therefore, the switching 
times are short. At these switching frequencies, even the shortest trace has significant impedance and the peak 
gate drive current rises significantly in an extremely short time. The transition speed of the current from one 
device to another causes voltage spikes across the interconnecting impedances and parasitic circuit elements. 
These voltage spikes can degrade efficiency, generate EMI, and increase device voltage stress and ringing. 
Careful component selection and proper PCB layout minimizes the magnitude of these voltage spikes.

The following are critical components 

when using the ISL81802 DC/DC converter:

• Controller

• Switching power components

• Small-signal components

The switching power components are the most critical to the layout because they switch a large amount of energy 
that tend to generate a large amount of noise. The critical small-signal components are those connected to 
sensitive nodes or those supplying critical bias currents. A multilayer PCB is recommended.

Complete the following steps to optimize the PCB layout.

1. Place the input capacitors, FETs, inductor, and output capacitor first. Isolate these power components on 

dedicated areas of the board with their ground terminals adjacent to one another. Place the input and output 
high frequency decoupling ceramic capacitors close to the MOSFETs. 

2. If signal components and the IC are placed separately from the power train, Renesas recommends using full 

ground planes in the internal layers with shared SGND and PGND to simplify the layout design. Otherwise, 
use separate ground planes for the power ground and the small signal ground. Connect the SGND and PGND 
together close to the IC. 

Note: DO NOT

 connect them together anywhere else.

3. Keep the loop formed by the input capacitor, the top FET, and the bottom FET as small as possible. 

4. Ensure the current paths from the input capacitor to the FETs, the power inductor, and the output capacitor are 

as short as possible with maximum allowable trace widths.

5. Place the PWM controller IC close to the lower FETs. The low-side FETs gate drive connections should be 

short and wide. Place the IC over a quiet ground area. Avoid switching ground loop currents in this area.

6. Place the VDD bypass capacitor close to the VDD pin of the IC and connect its ground end to the PGND pin. 

Connect the PGND pin to the ground plane by a via. 

Note: DO NOT

 connect the PGND pin directly to the SGND EPAD.

7. Place the gate drive components (BOOT diodes and BOOT capacitors) together near the controller IC.

8. Place the output capacitors as close to the load as possible. To avoid inductance and resistances, use short, 

wide copper regions to connect output capacitors to load.

9. Use copper filled polygons or wide, short traces to connect the junction of the upper FET, lower FET, and output 

inductor. Keep the PHASE nodes connection to the IC short. 

Note: DO NOT

 unnecessarily oversize the copper 

islands for the PHASE nodes. Because the phase nodes are subjected to extreme dv/dt voltages, the stray 
capacitor formed between these islands and the surrounding circuitry tends to couple switching noise. 

10. Route all high-speed switching nodes away from the control circuitry.

11. Create a separate small analog ground plane near the IC. Connect the SGND pin to this plane. Connect all small 

signal grounding paths including feedback resistors, current monitoring resistors and capacitors, soft-starting 
capacitors, loop compensation capacitors and resistors, and EN pull-down resistors to this SGND plane.

12. Use a pair of traces with minimum loop for the input or output current sensing connection.

13. Ensure the feedback connection to the output capacitor is short and direct.

Summary of Contents for ISL81802EVAL3Z

Page 1: ...ptional DEM PWM operation Optional CC HICCUP OCP protection Supports pre bias output with soft start PGOOD indicator OVP OTP and UVP protection Back biased from output to improve efficiency The ISL81802EVAL3Z 4 phase evaluation board is designed for high current applications The current rating of the ISL81802EVAL3Z is limited by the FETs and inductor selected The ISL81802EVAL3Z electrical ratings ...

Page 2: ...29 5 5 4 4 4 5 5 5 5 5 5 5 5 5 8 6 203 66 75 9 9 6 1 57 6 1 3 B 203 287 7 5 66 75 29 203 1 3 0 1 021 1 89 2 6 6 3 22 8 3 6 227 2 B02 9 9 3 1 3 0B02 227 3 6 8 7 6 9 1 6 6 1 89 2 021 3 5 5 5 5 8 6 203 66 75 9 9 6 1 57 6 1 3 B 203 287 7 5 66 75 29 203 1 3 0 1 021 1 89 2 6 6 3 22 8 3 6 227 2 B02 9 9 3 1 3 0B02 227 3 6 8 7 6 9 1 6 6 1 89 2 021 3 5 5 5 4 4 5 4 5 4 4 9 9 9 9 ...

Page 3: ...d Pin 2 1 1 Recommended Testing Equipment The following materials are recommended for testing 0V to 80V power supply with at least 40A source current capability Electronic loads capable of sinking current up to 50A Digital Multimeters DMMs 100MHz quad trace oscilloscope 1 2 Operating Range The input voltage range is from 18V to 80V for an output voltage of 12V If the output voltage is set to a low...

Page 4: ...hould be within 3 4 Adjust the load current within the specified range and observe the output voltage The output voltage variation should be within 3 5 Use an oscilloscope to observe output voltage ripple and phase node ringing For accurate measurement see Figure 3 for proper test setup Figure 2 Proper Test Setup Figure 3 Proper Probe Setup to Measure Output Ripple and Phase Node Ringing A Vin LOA...

Page 5: ...the power ground and the small signal ground Connect the SGND and PGND together close to the IC Note DO NOT connect them together anywhere else 3 Keep the loop formed by the input capacitor the top FET and the bottom FET as small as possible 4 Ensure the current paths from the input capacitor to the FETs the power inductor and the output capacitor are as short as possible with maximum allowable tr...

Page 6: ...ISL81802EVAL3Z 2 PCB Layout Guidelines R16UH0004EU0100 Rev 1 00 Page 6 of 19 Sep 15 20 2 1 ISL81802EVAL3Z Evaluation Board Figure 4 ISL81802EVAL3Z Evaluation Board Top View ...

Page 7: ...ISL81802EVAL3Z 2 PCB Layout Guidelines R16UH0004EU0100 Rev 1 00 Page 7 of 19 Sep 15 20 Figure 5 ISL81802EVAL3Z Evaluation Board Bottom View ...

Page 8: ...B Layout Guidelines R16UH0004EU0100 Rev 1 00 Page 8 of 19 Sep 15 20 2 2 ISL81802EVAL3Z Circuit Schematics 1 Figure 6 Schematic 1 3 GS 1 67 1 1 66 57 203 021 29 LQSXW 9287 1 5 GS 1 67 1 1 66 57 203 021 29 LQSXW 9287 1 5 5 ...

Page 9: ...6 6 1 89 2 021 3 6 1 5 13 13 X 9 Q 5 13 571 73 21 X Y 4 13 9287 73 21 Q S 5 13 5 N 5 N 5 P X 9 4 13 Q 4 6 1 73 21 X 9 Q S 5 X 9 5 13 73 21 73 21 5 N 5 P 571 5 N X 9 9 5 N 5 N 5 5 X 9 5 5 13 03 5 13 Q Q X 9 13 X Y 73 21 X X 9 X 9 X S 5 N 4 13 73 21 5 N X 9 t 57 13 X 4 6 1 X 5 X 9 9 Q 9 5 13 X 9 5 N 4 13 73 21 5 N 5 13 73 21 5 X 9 X Y 13 13 5 N 13 Q 9 1 X 9 5 13 5 5 N 5 13 5 X EW SK YGG YFF RY SOO S...

Page 10: ... 6 6 1 89 2 021 3 6 1 5 13 13 X 9 Q 5 13 571 73 21 X Y 4 13 9287 73 21 Q S 5 13 5 N 5 N 5 P X 9 4 13 Q 4 6 1 73 21 X 9 Q S 5 X 9 5 13 73 21 73 21 5 N 5 P 571 5 N X 9 9 5 N 5 N 5 5 X 9 5 5 13 03 5 13 Q Q X 9 13 X Y 73 21 X X 9 X 9 X S 5 N 4 13 73 21 5 N X 9 t 57 13 X 4 6 1 X 5 X 9 9 Q 9 5 13 X 9 5 N 4 13 73 21 5 N 5 13 73 21 5 X 9 X Y 13 13 5 N 13 Q 9 1 X 9 5 13 5 5 N 5 13 5 X EW SK YGG YFF RY SOO ...

Page 11: ... C64 C66 C73 C86 C92 C97 CAP SMD 1210 22µF 25V X7R ROHS Murata GRM32ER71E226KE15L 4 C21 C38 C71 C79 CAP OSCON SMD 10mm 1000μF 16V 20 12mΩ ROHS Panasonic 16SVPF1000M 2 C22 C62 CAP SMD 0603 0 047µF 25V X7R ROHS Kemet C0603C473K3RACTU 4 C24 C26 C56 C58 CAP SMD 0805 10µF 16V 10 X7S ROHS Murata GRM21BC71C106KE11L 2 C28 C74 CAP SMD 0603 820pF 50V 10 X7R ROHS Kemet C0603C821K5RACTU 10 C47 C48 C49 C50 C59...

Page 12: ...o RC0603FR 072K7L 4 R23 R27 R57 R77 RES SMD 100kΩ 1 1 10W 0603 Yageo RC0603FR 07100KL 2 R26 R71 RES SMD 22kΩ 1 1 10W 0603 Yageo RC0603FR 0722KL 4 R30 R32 R70 R101 RES SMD 39kΩ 1 1 10W 0603 Yageo RC0603FR 0739KL 4 R31 R33 R59 R75 RES SMD 39kΩ 1 1 10W 0603 Yageo RC0603FR 0739KL 8 R38 R39 R40 R67 R74 R97 R5 R63 RES SMD 51kΩ 1 1 10W 0603 Yageo RC0603FR 0751KL 7 R41 R96 R52 R53 R54 R60 R102 RES SMD 0Ω ...

Page 13: ...ISL81802EVAL3Z 2 PCB Layout Guidelines R16UH0004EU0100 Rev 1 00 Page 13 of 19 Sep 15 20 2 4 Board Layout Figure 9 Silkscreen Top Figure 10 Top Layer ...

Page 14: ...ISL81802EVAL3Z 2 PCB Layout Guidelines R16UH0004EU0100 Rev 1 00 Page 14 of 19 Sep 15 20 Figure 11 Second Layer Solid Ground Figure 12 Third Layer ...

Page 15: ...ISL81802EVAL3Z 2 PCB Layout Guidelines R16UH0004EU0100 Rev 1 00 Page 15 of 19 Sep 15 20 Figure 13 Bottom Layer Figure 14 Silkscreen Bottom ...

Page 16: ...gure 18 Inductor Current IL1 IL2 IL3 IL4 VIN 48V IOUT 40A Figure 19 Inductor Current IL1 IL2 IL3 IL4 VIN 80V IOUT 40A Figure 20 Load Transient VIN 18V IOUT 0A to 40A 2 5A µs CCM 0 2 4 6 8 10 12 14 0 10 20 30 40 Inductor Currents A Total Load Current A I_L1 I_L2 I_L3 I_L4 4µs Div VOUT 200mV Div 4µs Div IL1 10A Div IL2 10A Div IL3 10A Div IL4 10A Div 4µs Div IL1 10A Div IL2 10A Div IL3 10A Div IL4 1...

Page 17: ...Figure 25 Start Up Waveform VIN 80V IOUT 40A CCM Figure 26 Phase1 Phase2 Phase3 Phase4 VIN 18V IOUT 40A CCM VIN 48V TA 25 C unless otherwise noted Continued 2ms Div VOUT 500mV Div IL2 10A Div IL3 10A Div IL4 10A Div 2ms Div VOUT 500mV Div IL2 10A Div IL3 10A Div IL4 10A Div 10ms Div VOUT 5V Div IL2 10A Div IL3 10A Div IL4 10A Div 10ms Div VOUT 5V Div IL2 10A Div IL3 10A Div IL4 10A Div 10ms Div VO...

Page 18: ...re 27 Phase1 Phase2 Phase3 Phase4 VIN 48V IOUT 40A CCM Figure 28 Phase1 Phase2 Phase3 Phase4 VIN 80V IOUT 40A CCM VIN 48V TA 25 C unless otherwise noted Continued 2µs Div Phase1 50V Div Phase2 50V Div Phase3 50V Div Phase4 50V Div 2µs Div Phase1 Phase2 Phase3 Phase4 50V Div 50V Div 50V Div 50V Div ...

Page 19: ...ISL81802EVAL3Z 4 Revision History R16UH0004EU0100 Rev 1 00 Page 19 of 19 Sep 15 20 4 Revision History Rev Date Description 1 00 Sep 15 20 Initial release ...

Page 20: ...re intended for developers skilled in the art designing with Renesas products You are solely responsible for 1 selecting the appropriate products for your application 2 designing validating and testing your application and 3 ensuring your application meets applicable standards and any other safety security or other requirements These resources are subject to change without notice Renesas grants yo...

Reviews: