R31UH0005EU0100 Rev.1.0
Page 2
Jun 3, 2021
8V19N49x Hardware Design Guide
1. Overview
As indicated, this document provides board-level hardware design guidelines for the 8V19N49x product family.
The document also recommends power rail handling, loop filter calculation, and input/output termination. A
general schematic example is shown in
. A more detailed version is available upon request.
Figure 1. 8V19N490 Schematic Example
2. Power Rails
2.1
Bypass Capacitors
Bypass capacitors are required to filter out the system noise from switching power supplies and switching signal
interference from other parts of the system.
shows examples of bypass capacitors on the schematic. A
PCB layout example is also available upon request. The type of bypass capacitor will depend on the noise level
and noise frequencies in the system environment. The synthesizer output driver switching can also cause power
rail noise. These noises can also interfere with other parts of the circuit or cause spur on other output channels.
The bypass capacitor values are usually in the range of 0.01uF to 0.1uF; however, other values can be used.
Typical capacitor sizes are 0603, 0402, or 0201 with low ESR. The dielectric types typically are X5R or X7R. The
smaller size allows the capacitor to be placed close to the power pin and reduces the trace length. Some capacitor
vendors such as AVX provide online tools and models to provide the frequency response of the capacitors.
to
show the frequency response of various value capacitors provided by the capacitor supplier
AVX. The frequency response plot shows that the smaller value capacitor can filter out high frequency noise and a
larger value capacitor can filter out lower frequency noise. Typical power supply switching frequency can be
Place on the Top Layer
Layout Note: Place the bypass
capacitors (0201) next to the power
pins
VCO-VC
Place close to
the DUT
Close to
the pin
VCXO-VC
Place close to DUT Pins
Place close
toVCXO Pins 1
Close to the
pins if
possible
VCXO=122.88 MHz
LVPECL
1R%XLOWLQ7HUPLQDWLRQ
/9'66W\OH7HUPLQDWLRQ'&FRXSOLQJ([DPSOH
1R%XLOWLQ
7HUPLQDWLRQ
/9'66W\OH7HUPLQDWLRQ$&FRXSOLQJ([DPSOH
&/.[Q&/.[,QSXWLQWHUIDFH([DPSOH
'LIIHUHQWLDO6LJQDO
6DPHFLUFXLWFDQEHGXSOLFDWHGIRU
&/.Q&/.LQSXW
Loop Filter values shown here are
example only. Other values can also
be used. It depends on the system
loop band width requirementn.
/9'66W\OH7HUPLQDWLRQ$&FRXSOLQJH[DPSOHIRURKPODE
HTXLSPHQWPRQLWRULQJHJSKDVHQRLVHPHDVXUHPHQW
Keep this trace from noisy source
Keep this trace from
noisy source
VDD_LCF(Clean)
LVPECL Termination Example
There are many way to
terminate LVPECL driver
There are many way to
terminate LVPECL driver
VDD1
VDD_SYNC
VDD_QCLKB
VDD_QREFB
VDD_QCLKD
VDD_QREFD
VDD_QCLKE
VDD_SPI
VDD_CP2
VDD_LCV
VDD_QREFC
VDD_QCLKC
VDD_LCF
VDD_QCLKA
VDD_QREFA
VDD3
VCC_VCXO
VCC_VCXO
VDD
VREG_3.3V
VDD_SPI
LFV
SDAT
nINT
nCS
SCLK
LOCK
LFV
Q_VCXO
nQ_VCXO
Q_VCXO
nQ_VCXO
R16
2.8K, 1%
Zo = 50
R51
50
U5
VCXO_5mmx7mm_6pin_long_pad
VCONT
1
OE
2
GND
3
Q
4
nQ
5
VCC
6
R18
100
R7
1k
C3
100p
C5
0.1u
C28
0.1u
C19
100p
C13
0.1u
TP1
C9
100p
C17
High Impedance
+
-
R22
33k
R12
10K
C14
C4
0.1u
C29
0.1u
R15
10K
High Impedance Input
+
-
Zo = 50
C15
C32
0.1u
C31
33p
U1
IDT8V19N490
nQCLKB0
A1
QCLKB0
A2
VDD_QCLKB
A3
nQREF_B0
A4
QREF_B0
A5
nQCLK_B1
B1
QCLKB1
B2
VDD_QREFB
B3
nQREF_B1
B4
QREF_B1
B5
VDD_CP
B6
nOSC
B7
VDD_OSC
B8
QCLK_A1
B9
nQCLK_A1
B10
LFV
A6
OSC
A7
GND_A8
A8
QCLK_A0
A9
nQCLKA0
A10
GND_C1
C1
GND_C2
C2
GND_C3
C3
VDD_QREFD
C4
SELSV
C5
GND_C6
C6
X1
C7
nINT
C8
QCLK_A2
C9
nQCLK_A2
C10
nQCLK_D
D1
QCLK_D
D2
VDD_CLLKD
D3
nQREF_D
D4
QREF_D
D5
GND_D6
D6
X2
D7
GND_D8
D8
VDD_QREFA
D9
VDD_CLKA
D10
GND_E1
E1
GND_E2
E2
VCC_SPI
E3
nCS
E4
SCLK
E5
GND_E6
E6
GND_E7
E7
SDAT
E8
QREF_A2
E9
nQREF_A2
E10
nQREF_C0
F1
QREF_C0
F2
EXT_SYS
F3
CLK3
F4
CLK2
F5
CLK1
F6
CLK0
F7
RES_CAL
F8
QREF_A1
F9
nQREF_A1
F10
nQREF_C1
G1
QREF_C1
G2
VDD_INP
G3
nQCLK3
G4
nQCLK2
G5
nQCLK1
G6
nCLK0
G7
LOCK
G8
QREF_A0
G9
nQREF_A0
G10
VDD_CLKC
H1
VDD_QREF_C
H2
GND_H3
H3
GND_H4
H4
GND_H5
H5
GND_H6
H6
VDD_SYNC
H7
GND_H8
H8
GND_H9
H9
GND_H10
H10
nQCLK_C0
J1
QCLLK_C0
J2
GND_J3
J3
VDD_LCV
J4
CR0
J5
GND_J6
J6
GND_J7
J7
GND_J8
J8
QCLK_E1
J9
nQCLK_E1
J10
nQCLK_C1
K1
QCLK_C1
K2
GND_K3
K3
VDD_LCF
K4
LFFR
K5
LFF
K6
VDD_CPF
K7
VDD_QCLKE
K8
QCLK_E0
K9
nQCLK_E0
K10
Zo
R8
10K
C11
J1
R10
5.1K
C7
100p
C16
0.1u
R14
10K
Zo
R24
np (49.9)
C38
0.1uF
C8
0.1u
C22
0.1u
JP1
LVDS Driver
R11
5.1K
R53
50
C12
0.1u
C24
0.1u
C37
1u
C35
4.7n
C30
0.1u
C23
0.1u
C39
100pF
C27
100p
R5
100
C10
0.1u
C2
0.1u
R13
2 x Zo
C18
0.1u
R19
np (49.9)
C6
0.1u
Zo = 50
C20
0.1u
R20
51k
R9
100
C26
4.7u
C21
0.1u
Zo = 50
J2
C34
27n
C1
0.1u
R52
50
QREFD0_N
QCLKE0_N
QCLKE1_P
QCLKB0_N
QCLKB1_P
LFF
CLK1
QREFA1_N
QCLKA2_P
QREFA2_N
QREFA2_P
QREFA0_P
QREFA0_N
QCLKE1_N
QCLKE0_P
QREFA1_P
QCLKC0_N
QCLKA0_P
QCLKA0_N
QCLKC0_P
QCLKA1_N
QCLKA1_P
QCLKA2_N
nCLK2
CLK2
CLK3
nCLK3
QCLKB1_N
QCLKB0_P
QCLKD0_N
QCLKD0_P
QREFB1_N
QREFB1_P
QREFB0_N
QREFB0_P
QREFD0_P
QREFC0_N
QREFC0_P
nCLK1
CLK0
QREFC1_N
QREFC1_P
LFFR
MCLK_P
MCLK_N
RES_CAL
EXT_SYS
VC
OE
QCLKx
nQCLKx
QCLKx
nQCLKx
QCLKA0
nQCLKA0
nCLK0