background image

QUINT4-PS/12-24DC/24DC/1.3/PT

110258_en_00

PHOENIX CONTACT

14/31

6

High-voltage test (HIPOT)

This protection class II power supply is subject to the Low 

Voltage Directive and is factory tested. During the HIPOT 

test (high-voltage test), the insulation between the input 

circuit and output circuit is tested for the prescribed electric 

strength values, for example. The test voltage in the high-

voltage range is applied at the input and output terminal 

blocks of the power supply. The operating voltage used in 

normal operation is a lot lower than the test voltage used.

6.1

High-voltage dielectric test (dielectric strength 

test)

In order to protect the user, power supplies (as electric 

components with a direct connection to potentially 

hazardous voltages) are subject to more stringent safety 

requirements. For this reason, permanent safe electrical 

isolation between the hazardous input voltage and the 

touch-proof output voltage as safety extra-low voltage 

(SELV) must always be ensured.
In order to ensure permanent safe isolation of the DC input 

circuit and DC output circuit, high-voltage testing is 

performed as part of the safety approval process (type test) 

and manufacturing (routine test).

6.2

High-voltage dielectric test during the 

manufacturing process

During the power supply manufacturing process, a high-

voltage test is performed as part of the dielectric test in 

accordance with the specifications of IEC/UL/EN 61010-1. 

The high-voltage test is performed with a test voltage of at 

least 1.2 kV DC or higher. Routine manufacturing tests are 

inspected regularly by a certification authority.

6.3

High-voltage dielectric test performed by the 

customer

Apart from routine and type tests to guarantee electrical 

safety, the end user does not have to perform another high-

voltage test on the power supply as an individual 

component. According to EN 60204-1 (Safety of machinery 

- Electrical equipment of machines) the power supply can be 

disconnected during the high-voltage test and only installed 

once the high-voltage test has been completed.

6.3.1 Performing high-voltage testing

If high-voltage testing of the control cabinet or the power 

supply as a stand-alone component is planned during final 

inspection and testing, the following features must be 

observed.

– The power supply wiring must be implemented as 

shown in the wiring diagram.

– The maximum permissible test voltages must not be 

exceeded.

Avoid unnecessary loading or damage to the power supply 

due to excessive test voltages.

Figure 1

Potential-related wiring for the high-voltage 

test

Key

High-voltage tests up to 1.2 kV DC can be 

performed as described.
The test voltage should rise and fall in ramp form. 

The relevant rise and fall time of the ramp should 

be at least two seconds.

For the relevant applicable test voltages and 

insulation distances, refer to the corresponding 

table (see technical data: electric strength of the 

insulation section).

No. Designation

Color coding

Potential lev

-

els

1

DC output circuit Blue

Potential 1

2

Signal contacts Blue

Potential 1

3

High-voltage 

tester

--

--

4

DC input circuit Red

Potential 2

QUINT PO

WER 

O

rd.No

.xxxxxxx

Output DC 

SIG  

+

̐

3.1 2.1 2.2

Input DC 

1.1 1.2

+

̐

Boost > 100%

> 75%

> 50%

DC OK

Signal (SIG)

U

Out

P

Out

  

> P

Thr

 

     

HV

/=

1

2

3

4

ó

Summary of Contents for QUINT4-PS/12-24DC/24DC/1.3/PT

Page 1: ...power dissipation Technical data short form Input voltage range 12 V DC 24 V DC 25 33 Mains buffering typ 19 ms 24 V DC Nominal output voltage UN 24 V DC Setting range of the output voltage USet 24 V...

Page 2: ...Ordering data 3 4 Technical data 4 5 Safety and installation notes 13 6 High voltage test HIPOT 14 7 Structure of the power supply 15 8 Mounting removing the power supply 18 9 Device connection termi...

Page 3: ...1 Multi channel electronic circuit breaker for protecting four loads at 24 V DC in the event of overload and short circuit With electronic locking of the set nominal currents For installation on DIN r...

Page 4: ...current limitation 1 6 A Inrush current integral I2 t typ 0 1 A2 s Input fuse fast blow internal 15 A During the first few microseconds the current flow into the filter capacitors is excluded The SCC...

Page 5: ...0 0 25 0 50 0 75 1 00 1 25 1 50 1 75 2 00 IOut A 1 1 2 UIn 12 V DC UOut 24 V DC UIn 24 V DC UOut 24 V DC 2 Input connection data Connection method Push in connection Conductor cross section rigid 0 5...

Page 6: ...series yes Feedback voltage resistance 35 V DC Protection against overvoltage at the output OVP 32 V DC Rise time typical 1 s UOUT 10 90 Output connection data Connection method Push in connection Co...

Page 7: ...40 C 1 3 A 320000 h 30 C The expected service life is based on the capacitors used If the capacitor specification is observed the specified data will be ensured until the end of the stated service lif...

Page 8: ...eration refers to IEC 61010 surrounding air temperature Ambient temperature start up type tested 40 C Ambient temperature storage transport 40 C 85 C Max permissible relative humidity operation 95 at...

Page 9: ...MC requirements power plant EN 61850 3 EN 61000 6 5 Approvals UL UL Listed UL 61010 1 CAN CSA C22 2 No 61010 1 12 UL Listed UL 61010 2 201 CAN CSA C22 2 No 61010 2 201 18 UL 121201 CSA C22 2 No 213 17...

Page 10: ...0 6 1 residential EN 61000 6 2 industrial and EN 61000 6 5 power station equipment zone IEC EN 61850 3 energy supply CE basic standard Minimum normative requirements of EN 61000 6 2 CE immunity for in...

Page 11: ...A Criterion A Power frequency magnetic field EN 61000 4 8 50 Hz 60 Hz 30 A m 16 67 Hz 50 Hz 60 Hz 100 A m 60 s not required 50 Hz 60 Hz 1 kA m 3 s not required 0 Hz 300 A m DC 60 s Comments Criterion...

Page 12: ...l 1 MHz 1 kV Test Level 2 asymmetrical Signals 1 MHz 0 5 kV Test Level 2 symmetrical 1 MHz 0 5 kV Test Level 2 symmetrical 1 MHz 1 kV Test Level 2 asymmetrical 1 MHz 1 kV Test Level 2 asymmetrical Com...

Page 13: ...re the correct size and have sufficient fuse protection For the connection parameters for wiring the power supply such as the required stripping length with and without ferrule refer to the technical...

Page 14: ...higher Routine manufacturing tests are inspected regularly by a certification authority 6 3 High voltage dielectric test performed by the customer Apart from routine and type tests to guarantee electr...

Page 15: ...l block output voltage Output DC 3 Accommodation for cable binders 4 Integrated snap on foot for carrier rail mounting 5 QR code web link 6 Connection terminal block input voltage Input 7 Signaling DC...

Page 16: ...keep out areas in mm Nominal output capacity Spacing mm a b c 50 0 30 30 50 5 30 30 If adjacent components are active and the nominal output power 50 there must be lateral spacing of 15 mm 99 b c 22 5...

Page 17: ...current limitation Switching transistor and main transmitter electrically isolating Secondary rectification and smoothing Filter Optocoupler electrically isolating Additional regulatory protection ag...

Page 18: ...he integrated snap on foot audibly latches into place B 3 Check that the power supply is securely attached to the DIN rail Figure 7 Snapping the power supply onto the DIN rail 8 2 Removing the power s...

Page 19: ...onnection wiring is attached safely and securely without damaging the connection wiring Figure 10 Secure connection wiring with cable binder Shorten the excess length of the cable ties Then check agai...

Page 20: ...al data section Protection Figure 12 Pin assignment for DC supply voltage DC applications require upstream installation of a fuse that is permitted for the operating voltage 9 3 Output By default the...

Page 21: ...This ensures that sufficient reserve energy is available overdimensioning of the power supply is not necessary For system extension With the static boost up to 125 of the nominal output power is avail...

Page 22: ...ed recovery time tPause at the maximum dynamic boost current IDyn Boost based on the following values IBase Load Duration of the boost current tDyn Boost Ambient temperature 40 C or 60 C 11 2 1 Recove...

Page 23: ...c output current IDyn Boost of 2 6 A increases for 2 s tDyn Boost After a recovery time tPause of 6 s the dynamic boost is available once again Figure 18 Example recovery time for 40 C 1 8 5 4 3 6 7 2...

Page 24: ...h in position 50 75 or boost 100 In each of these switch positions the output power POut is monitored When the set threshold is exceeded the yellow LED lights up POut PThr and the signal output SIG sw...

Page 25: ...alled in protected areas and has direct connections to other areas must satisfy the immunity criteria Use Phoenix Contact surge protection Order No 2905223 when you are using signal connection types p...

Page 26: ...ies operation 13 2 Parallel operation You can connect several power supplies in parallel in order to increase the power or to supply the loads redundantly Figure 24 Schematic diagram in parallel opera...

Page 27: ...ematic diagram redundant operation with diode Certain specifications apply in redundancy operation with regard to the configuration of the keepout areas In redundancy operation the power supplies are...

Page 28: ...output more than the nominal power for a sustained period Figure 27 Output power depending on the ambient temperature 14 2 Installation height The power supply can be operated at an installation heigh...

Page 29: ...hould be mounted horizontally for heat dissipation reasons input connection terminal blocks facing downward Please observe the derating for any mounting other than the normal mounting position Reduce...

Page 30: ...QUINT4 PS 12 24DC 24DC 1 3 PT 110258_en_00 PHOENIX CONTACT 30 31 14 3 3 Rotated mounting position 180 Z axis 14 3 4 Rotated mounting position 270 Z axis 0 1 2 13 2 0 1 2 13 2...

Page 31: ...S 12 24DC 24DC 1 3 PT 110258_en_00 31 31 PHOENIX CONTACT GmbH Co KG 32823 Blomberg Germany phoenixcontact com 14 3 5 Rotated mounting position 90 X axis 14 3 6 Rotated mounting position 270 X axis 0 1...

Reviews: