background image

Philips Semiconductors Linear Products

Product specification

µ

A747C

Dual operational amplifier

54

August 31, 1994

853-0899 13721

DESCRIPTION

The 747 is a pair of high-performance monolithic operational
amplifiers constructed on a single silicon chip. High common-mode
voltage range and absence of “latch-up” make the 747 ideal for use
as a voltage-follower. The high gain and wide range of operating
voltage provides superior performance in integrator, summing
amplifier, and general feedback applications. The 747 is short-circuit
protected and requires no external components for frequency
compensation. The internal 6dB/octave roll-off insures stability in
closed-loop applications. For single amplifier performance, see

µ

A741 data sheet.

FEATURES

No frequency compensation required

Short-circuit protection

Offset voltage null capability

Large common-mode and differential voltage ranges

Low power consumption

No latch-up

PIN CONFIGURATION

+

B

A

INVERTING INPUT B

NON–INVERTING INPUT B

OFFSET NULL B

V–

OFFSET NULL A

NON–INVERTING INPUT A

INV. INPUT A

OFFSET NULL B

V + B

OUTPUT B

1

2

3

4

5

6

7

8

14

13

12

11

10

9

OFFSET NULL A

V + A

OUTPUT A

NO CONNECT

N Package

TOP VIEW

+

ORDERING INFORMATION

DESCRIPTION

TEMPERATURE RANGE

ORDER CODE

DWG #

14-Pin Plastic DIP

0

°

C to 70

°

C

µ

A747CN

0405B

EQUIVALENT SCHEMATIC

NON–INVERTING

INPUT

Q1

Q8

Q2

Q3

Q4

Q7

Q5

Q6

R1
1K

R3
50K

R2
1K

Q9

Q13

R5
39K

Q10

Q11

Q22

V+

Q14

R9
25

OUTPUT

R10
50

Q20

Q16

Q17

Q18 Q15

V–

R11
50

R12
50k

R7
4.5

R8
7.5K

R4
5k

30pF

Q12

OFFSET NULL

INVERTING INPUT

OFFSET NULL

Summary of Contents for UA747C

Page 1: ...op applications For single amplifier performance see µA741 data sheet FEATURES No frequency compensation required Short circuit protection Offset voltage null capability Large common mode and differential voltage ranges Low power consumption No latch up PIN CONFIGURATION B A INVERTING INPUT B NON INVERTING INPUT B OFFSET NULL B V OFFSET NULL A NON INVERTING INPUT A INV INPUT A OFFSET NULL B V B OU...

Page 2: ...ERISTICS TA 25 C VCC 15V unless otherwise specified SYMBOL PARAMETER TEST CONDITIONS µA747C UNIT SYMBOL PARAMETER TEST CONDITIONS Min Typ Max UNIT VOS Offset voltage RS 10kΩ 2 0 6 0 mV RS 10kΩ over temp 3 0 7 5 mV VOS T 10 µV C IOS Offset current 20 200 nA Over temperature 7 0 300 nA IOS T 200 pA C IBIAS Input current 80 500 nA Over temperature 30 800 nA IB T 1 nA C VOUT Output voltage swing RL 2k...

Page 3: ...25oC 0 45 90 135 180 FREQUENCY Hz Open Looped Voltage Response as a Function of Frequency PEAK TO PEAK OUTPUT SWING V 40 36 32 28 24 20 16 12 8 4 0 100 1k 10k 100k 1M FREQUENCY Hz VS 15V TA 25oC RL 10kΩ Output Voltage Swing as a Function of Frequency 115 110 105 100 95 90 85 80 0 4 8 12 15 20 SUPPLY VOLTAGE V VOLTAGE GAIN dB TA 25OC Open Loop Voltage Gain as a Function of Supply Voltage PEAK TO PE...

Page 4: ... 100 0 60 20 20 60 100 140 TEMPERATURE oC Input Bias Current as a Function of Ambient Temperature INPUT RESISTANCE MΩ 10 0 5 0 3 0 1 0 0 5 0 3 0 1 60 20 20 60 100 140 TEMPERATURE oC Input Resistance as a Function of Ambient Temperature VS 15V 40 30 20 10 0 5 10 15 20 SUPPLY VOLTAGE V INPUT OFFSET CURRENT nA TA 25oC Input Offset Current as a Function of Supply Voltage 140 120 100 80 60 40 20 0 60 2...

Page 5: ...E V Hz 2 MEAN SQUARE NOISE CURRENT 10 21 10 22 10 23 10 24 10 25 10 26 10 100 1K 10K 100K FREQUENCY Hz Broadband Noise for Various Bandwidths TOTAL NOISE REFERRED TO INPUT Vrms µ 10 1kHz 100 10 1 0 1 100 1K 10K 100K 10 100kHz 10 10kHz SOURCE RESISTANCE Ω VS 15V TA 25oC Input Noise Current as a Function of Frequency Input Noise Voltage as a Function of Frequency VS 15V TA 25oC TEST CIRCUITS µA747C ...

Reviews: