background image

Philips Semiconductors

Product specification

PDIUSBH12

USB 2-port hub

1999 Jul 22

4

Analog Transceivers

These transceivers interface directly to the USB cables through
some termination resistors. They are capable of transmitting and
receiving serial data at both “full speed” (12 Mbit/s) and “low speed”
(1.5 Mbit/s) data rates.

Hub Repeater

The hub repeater is responsible for managing connectivity on a per
packet basis. It implements packet signaling connectivity and
resume connectivity.

Low speed devices can be connected to downstream ports since the
repeater will not propagate upstream packets to downstream ports,
to which low speed devices are connected, unless they are
preceded by a PREAMBLE PID.

End of Frame Timers

This block contains the specified EOF1 and EOF2 timers which are
used to detect loss-of-activity and babble error conditions in the hub
repeater. The timers also maintain the low-speed keep-alive strobe
which is sent at the beginning of a frame.

General and Individual Port Controller

The general and individual port controllers together provide status
and control of individual downstream ports. Via the I

2

C-interface a

microcontroller can access the downstream ports and request or
change the status of each individual port.

Any change in the status or settings of the individual port will result
in an interrupt request. Via an interrupt register, the servicing
microcontroller can look up the downstream port which generated
the interrupt and request its new status. Any port status change can
then be reported to the host via the hub status change (interrupt)
endpoint.

PLL

A 12 MHz to 48 MHz clock multiplier PLL (Phase-Locked Loop) is
integrated on-chip. This allows for the use of low-cost 12 MHz
crystal. EMI is also minimized due to lower frequency crystal. No
external components are needed for the operation of the PLL.

Bit Clock Recovery

The bit clock recovery circuit recovers the clock from the incoming
USB data stream using 4X over-sampling principle. It is able to track
jitter and frequency drift specified by the USB specification.

Philips Serial Interface Engine (PSIE)

The Philips SIE implements the full USB protocol layer. It is
completely hardwired for speed and needs no firmware intervention.
The functions of this block include: synchronization pattern
recognition, parallel/serial conversion, bit stuffing/de-stuffing, CRC
checking/generation, PID verification/generation, address
recognition, handshake evaluation/generation.

Memory Management Unit (MMU) and Integrated
RAM

The MMU and the integrated RAM is used to handle the large
difference in data rate between USB, running in bursts of 12 Mbit/s
and the I

2

C interface to the microcontroller, running at up to 

1 Mbit/s. This allows the microcontroller to read and write USB
packets at its own speed through I

2

C.

I

2

C Slave Interface

This block implements the necessary I

2

C interface protocol. A slave

I

2

C allows for simple micro-coding. An interrupt is used to alert the

microcontroller whenever the PDIUSBH12 needs attention. As a
slave I

2

C device, the PDIUSBH12 I

2

C clock: SCL is an input and is

controlled by the microcontroller. The I

2

C interface can run up to 1

Mbit/s.

SoftConnect

The connection to the USB is accomplished by bringing D+ (for
high-speed USB device) high through a 1.5 k

 pull-up resistor. In

the PDIUSBH12, the 1.5 k

 pull-up resistor is integrated on-chip

and is not connected to V

CC

 by default. Similarly, the 15 k

pull-down resistors are integrated on-chip and are not connected to
GND by default. The connection of the internal resistors to Vcc is
established through a command sent by the external/system
microcontroller. This allows the system microcontroller to complete
its initialization sequence before deciding to establish connection to
the USB. Re-initialization of the USB bus connection can also be
affected without requiring the pull out of the cable.

The PDIUSBH12 will check for USB VBUS availability before the
connection can be established. VBUS sensing is provided through
OCURRENT_N pin. See the pin description for details. Sharing of
VBUS sensing and overcurrent sensing can be easily accomplished
by using VBUS voltage as the pull-up voltage for the open drain
output of the overcurrent indication device.

It should be noted that the tolerance of the internal resistors is
higher (30%) than that specified by the USB specification (5%).
However, the overall V

SE

 voltage specification for the connection

can still be met with good margin. The decision to make use of this
feature lies with the users.

SoftConnect

 is a patent pending technology from Philips

Semiconductors.

GoodLink

Good downstream USB connection indication is provided through
GoodLink

 

technology. When the port is enabled and there is at

least one valid upstream traffic from the port, the LED indicator will
be ON. The LED indicator will blink on every valid upstream traffic. A
valid upstream traffic is defined as traffic with a good SOP and
terminated by a good EOP. During global suspend, all LEDs will be
OFF.

This feature provides a user-friendly indicator on the status of the
hub, the connected downstream devices and the USB traffic. It is a
useful field diagnostics tool to isolate the faulty equipment. This
feature helps lower the field support and the hotline costs.

Summary of Contents for Integrated Circuits PDIUSBH12

Page 1: ... PDIUSBH12 USB 2 port hub Product specification Supersedes data of 1999 Feb 25 1999 Jul 22 INTEGRATED CIRCUITS ...

Page 2: ... to choose the optimum system microcontroller from the available wide variety This flexibility cuts down the development time risks and costs by allowing the use of the existing architecture and the firmware investments This results in the fastest way to develop the most cost effective USB peripheral solutions that need hub functionality The PDIUSBH12 is ideally suited for computer monitors dockin...

Page 3: ...X RX PHILIPS SIE INTEGRATED RAM BIT CLOCK RECOVERY MEMORY MANAGEMENT UNIT I2C SLAVE INTERFACE 12 MHz FULL SPEED INTERRUPT SDA SCL LED D D LED D D DOWNSTREAM PORT 2 DOWNSTREAM PORT 3 D D UPSTREAM PORT GOODLINK CONTROL GOODLINK NO CONNECTION CONNECTED DATA TRANSFER NO LIGHT LIT BLINKING PLL SV00852 SoftConnect D 3 3V 1 5kΩ NOTE 1 This is a conceptual block diagram and does not include each individua...

Page 4: ...grated RAM is used to handle the large difference in data rate between USB running in bursts of 12 Mbit s and the I2C interface to the microcontroller running at up to 1 Mbit s This allows the microcontroller to read and write USB packets at its own speed through I2C I2C Slave Interface This block implements the necessary I2C interface protocol A slave I2C allows for simple micro coding An interru...

Page 5: ...Hub 0 Upstream 2 3 Downstream 0 1 Control IN 8 2 3 Downstream 1 Interrupt IN 1 0 2 Control OUT 8 0 3 Control IN 8 1 5 Generic OUT 8 Embedded 1 1 4 Generic IN 8 Function 1 1 2 6 Generic OUT 8 2 7 Generic IN 8 3 8 Generic OUT 8 3 9 Generic IN 8 NOTE 1 Hub interrupt endpoint is not indexed 2 Generic endpoint can be used for Interrupt or Bulk endpoint Table 2 MULTIPLE 3 EMBEDDED FUNCTION MODE FUNCTION...

Page 6: ...uency is now programmable rather than fixed to 12 MHz The output clock frequency can be programmed through the Set Mode command All these new features are added while maintaining backward compatibility to the PDIUSBH11 through TEST2 and TEST1 pins TEST2 TEST1 MODE INPUT XTAL FREQUENCY MHz OUTPUT CLOCK FREQUENCY AT REST 00 MODE 0 GoodLink 48 12MHz 01 MODE 0 GoodLink 12 4 MHz 10 MODE 1 Individual Ov...

Page 7: ...than 2 seconds is interpreted as loss of VBUS 11 SWITCH_N Output OD6 Enables power to downstream ports 12 SUSPEND Output OD6 Device is in suspended state 13 DN2_GL_N Output OD6 Downstream port 2 GoodLink LED indicator 14 DN3_GL_N Output OD6 Downstream port 3 GoodLink LED indicator 15 RSVD Input Reserved Connect to GND for normal operation 16 RSVD Input Reserved Connect to GND for normal operation ...

Page 8: ... longer than 2 seconds is interpreted as loss of VBUS 11 SWITCH_N Output OD6 Enables power to downstream ports 12 SUSPEND Output OD6 Device is in suspended state 13 DN2_GL_N Output OD6 Downstream port 2 GoodLink LED indicator 14 OCURRENT3_N Input ST Downstream port 3 over current notice 15 RSVD Input Reserved Connect to GND for normal operation 16 RSVD Input Reserved Connect to GND for normal oper...

Page 9: ... transactions Writing to the command address is interpreted as a command while reading from writing to the data address is used to transfer data between the PDIUSBH12 and the controller ADDRESS TABLE TYPE OF ADDRESS PHYSICAL ADDRESS MSB to LSB Command 0011 011 binary Data 0011 010 binary Protocol An I2C transaction starts with a Start Condition followed by an address When the address matches eithe...

Page 10: ...Read 1 byte optional Read Last Transaction Status Hub Control OUT 40h Read 1 byte Hub Control IN 41h Read 1 byte Other Endpoints 40h Endpoint Index Read 1 byte Read Endpoint Status Hub Control OUT 80h Read 1 byte Hub Control IN 81h Read 1 byte Other Endpoints 80h Endpoint Index Read 1 byte Read Buffer Selected Endpoint F0h Read n bytes Write Buffer Selected Endpoint F0h Write n bytes Set Endpoint ...

Page 11: ... POWER ON VALUE ADDRESS ENABLE SV00825 0 0 0 0 0 0 Address The value written becomes the address Enable A 1 enables this function Set Endpoint Enable Command D8h Data Write 1 byte The hub s interrupt endpoint and the embedded functions generic endpoints can only be enabled when the corresponding hub function is enabled via the Set Address Enable command SV00841 7 6 5 4 3 2 0 1 0 0 POWER ON VALUE E...

Page 12: ... that the upstream resistor will not be connected The programmed value will not be changed by a bus reset Connect Downstream Resistors A 1 indicates that downstream resistors are connected A 0 means that downstream resistors are not connected The programmed value will not be changed by a bus reset Non blinking LEDs A 1 indicates that GoodLink LEDs will NOT blink when there is traffic Leave this bi...

Page 13: ...pletely identical to the hardware reset through the RESET_N pin with the sole difference of interrupt notification The hub interrupt endpoint is handled internally by the PDIUSBH12 hardware without the need of microcontroller intervention Select Endpoint Command 00 0Dh Data Optional Read 1 byte The Select Endpoint command initializes an internal pointer to the start of the Selected buffer Optional...

Page 14: ...d Buffer command This means that reading or writing a buffer can be interrupted by any other command except for Select Endpoint or can be done by more than one I2C transaction read the first 2 bytes to get the number of data bytes then read the rest in other transactions The data in the buffer are organized as follows byte 0 Reserved can have any value byte 1 Number length of data bytes byte 2 Dat...

Page 15: ...itten in the data phase is the feature code described in Table 4 When the controller receives a Set Feature or a Clear Feature request there are two possibilities The request applies to port 1 the embedded port In this case the request should be handled internally by the controller If the request applies to ports 2 and 3 the controller should translate the request into a Set Feature or Clear Featu...

Page 16: ... that power is supplied to downstream ports Since the PDIUSBH12 supports gang mode power switching this bit is the same for all ports Low Speed A 1 indicates that low speed device is connected to this port This bit is only valid when Connect bit is a 1 Port Status Change Byte The description for the Port Status Change Byte is similar to the Port Status Byte except that the value of the bits are 1 ...

Page 17: ...oint Enable command SetFeature PORT_ENABLE Enable the function by the Set embedded function Address Enable command Set the Enable Status bit SetFeature PORT_SUSPEND Disable the function by the Set embedded function Address Enable command Reset the Enable Status bit and set the Suspend Status bit ClearFeature PORT_ENABLE Disable the function by the Set embedded function Address Enable command Reset...

Page 18: ...VO VCC or VO 0 50 mA VO DC output voltage Note 2 0 5 VCC 0 5 V IO DC output sink or source current for other pins VO 0 to VCC 15 mA IO DC output sink or source current for D D pins VO 0 to VCC 50 mA IGND ICC DC VCC or GND current 100 mA VESD Electrostatic discharge voltage IIL 1 µA 3 4000 4 V TSTG Storage temperature range 60 150 C PTOT Power dissipation per package NOTES 1 Stresses beyond those l...

Page 19: ...Operating current 02 ports operating 13 mA DC CHARACTERISTICS AI O pins SYMBOL PARAMETER TEST CONDITIONS MIN MAX UNIT Leakage Current ILO Hi Z state data line leakage 0V VIN 3 3V 10 µA Input Levels VDI Differential input sensitivity D D 1 0 2 V VCM Differential common mode range Includes VDI range 0 8 2 5 V VSE Single ended receiver threshold 0 8 2 0 V Output Levels VOL Static output LOW RL of 1 5...

Page 20: ...mings tEOPT Source EOP width Figure 1 160 175 ns tDEOP Differential data to EOP transition skew Figure 1 2 5 ns Receiver Timings Receiver Data Jitter Tolerance tJR1 To next transition Characterized and not tested 18 5 18 5 ns tJR2 For paired transitions Guaranteed by design 9 9 ns EOP Width at Receiver tEOPR1 Must reject as EOP Figure 1 40 ns tEOPR2 Must accept 82 ns Hub Timings Full Speed downstr...

Page 21: ...gure 1 1 25 1 50 µs tLDEOP Differential data to EOP transition skew Figure 1 40 100 ns Receiver Timings EOP Width at Receiver tLEOPR1 Must reject as EOP Figure 1 330 ns tLEOPR2 Must accept Figure 1 675 ns Hub Timings Low Speed downstream port tLHDD Hub Differential Data Delay Figure 2 300 ns tLSOP Data bit width distortion after SOP Figure 2 65 45 ns tLEOPDR Hub EOP Delay Relative to THDD Figure 3...

Page 22: ...XT J LOW SPEED TIMINGS ARE DETERMINED IN THE SAME WAY FOR tLHDD AND tLSOP Figure 2 Hub Differential Data Delay and SOP distortion UPSTREAM DIFFERENTIAL DATA DOWNSTREAM DIFFERENTIAL DATA VDD VSS VSS A DOWNSTREAM EOP DELAY B UPSTREAM EOP DELAY EOP DELAY tEOPD tEOP EOP DELAY RELATIVE TO tHDD tEOPDR tEOPD tHDD EOP SKEW tHESK tEOP tEOP LOW SPEED TIMINGS ARE DETERMINED IN THE SAME WAY FOR tLEOPD tLEOPDR...

Page 23: ... SCL LOW time 0 45 µs tHIGH SCL HIGH time 0 45 µs tr SCL and SDA rise time 0 3 µs tf SCL and SDA fall time 0 1 µs tSU DAT Data set up time 100 ns tHD DAT Data hold time 0 ns tVD DAT SCL LOW to data out valid 0 4 µs tSU STO Stop condition set up time 0 25 µs A detailed description of the I2C bus specification with applications is given in the brochure The I2C bus and how to use it This brochure may...

Page 24: ...Philips Semiconductors Product specification PDIUSBH12 USB 2 port hub 1999 Jul 22 24 SO28 plastic small outline package 28 leads body width 7 5mm SOT136 1 ...

Page 25: ...Philips Semiconductors Product specification PDIUSBH12 USB 2 port hub 1999 Jul 22 25 DIP28 plastic dual in line package 28 leads 600 mil SOT117 1 ...

Page 26: ... infrared convection heating in a conveyor type oven Throughput times preheating soldering and cooling vary between 100 and 200 seconds depending on heating method Typical reflow peak temperatures range from 215 250 C The top surface temperature of the packages should preferably be kept below 230 C WAVE SOLDERING Conventional single wave soldering is not recommended for surface mount devices SMDs ...

Page 27: ... to the Drypack information in the Data Handbook IC26 Integrated Circuit Packages Section Packing Methods 2 For SDIP packages the longitudinal axis must be parallel to the transport direction of the printed circuit board 3 These packages are not suitable for wave soldering as a solder joint between the printed circuit board and heatsink at bottom version cannot be achieved and as solder may stick ...

Page 28: ...anges Philips Semiconductors reserves the right to make changes without notice in the products including circuits standard cells and or software described or contained herein in order to improve design and or performance Philips Semiconductors assumes no responsibility or liability for the use of any of these products conveys no license or title under any patent copyright or mask work right to the...

Reviews: