background image

®

N o n - c o n t a c t   T e m p e r a t u r e   S e n s o r

 P S - 2 1 9 7

3

0 1 2 - 1 0 3 2 3 C

The sensor measures 

V

 and 

T

a

 internally. A 

microprocessor in the sensor uses these values to 

calculate 

T

o

.

Object Emissivity

The sensor calculates temperature based on the 

assumption that the object has an emissivity of 1. This is 

a good approximation for surfaces, such as paint, wood, 

paper, plastic, water, ice, human skin, and asphalt, that 

have emissivities greater than 0.9. 

Other surfaces, especially polished metals, have lower 

emmisivites. An object with emissivity significantly less 1 

will radiate less power per unit area than a blackbody of 

the same temperature. A low-emissivity object will also 

reflect more radiation from other sources. These 

combined effects may cause the temperature reported by 

the sensor to differ from the actual object temperature for 

low-emissivity objects. If you know the values of 

T

a

 and 

o

, you can approximate actual temperature using

T

o

4

 = 

T

R

4



o

 + 

T

a

4

(1-1



o

)

Where 

T

R

 is the object temperature as reported by the 

sensor, and 

T

o

 is the actual object temperature. The 

detector temperature, 

T

a

, can be assumed equal to 

ambient temperature.

A more practical way to measure the temperature of a 

low-emissivity object is to apply paint or tape to the 

surface, creating a surface that has the same 

temperature as the object but a higher emissivity.

Measurement Accuracy

The table below gives the sensor’s accuracy for a 

blackbody object over a range of sensor temperature 

(

T

a

) and object temperature (

T

o

). Under typical 

conditions, the accuracy is ±0.5 °C.

Demonstrations

Measure the temperatures of your hand, face, 

clothes, and the inside of your mouth (Figure 1.3).

Measure the temperatures of various outdoor 

ground surfaces (Figure 1.4).

Place the sensor horizontally on a table and start 

recording data. Display the data on a temperature 

versus time graph. Walk quickly past the sensor 

(Figure 1.5).

Take a block of ice directly from a freezer and 

record the temperature as it warms and melts. 

Display the data on a temperature versus time 

graph (Figure 1.6)

Figure 1.3: Various body parts

±4 °C

±4 °C

±3 °C

±3 °C

±3 °C

±2 °C

±2 °C

±2 °C

±1 °C

±1 °C

±1 °C

±0.5 °C

T

a

 (°C)

-20

0

50

T

o

 (°C)

240

180

120

60

0

-40
-70

380

Reviews: