background image

NCV97310MW33GEVB

http://onsemi.com

7

APPLICATION INFORMATION

Output Voltage Selection

The voltage outputs for switcher 2 and switcher 3 are

adjustable and can be set with a resistor divider. The FB
reference for both switchers is 1.2 V.

R

LOWER

R

UPPER

FBx = 1.2 V

VOUT 2 (VOUT 3)

The upper resistor is set to 10 k

W

 and is part of the

feedback loop. To maintain stability over all conditions, it is
recommended to change the only the lower feedback resistor
to set the output voltage. Use the following equation:

R

LOWER

+

R

UPPER

V

FB

V

OUT

*

V

FB

Some common setups are listed below:

Desired

Output (V)

VREF (V)

R

UPPER

(k

W

, 1%)

R

LOWER

(k

W

, 1%)

1.2

1.2

10.0

NP

1.5

1.2

10.0

40.0

1.8

1.2

10.0

20.0

2.5

1.2

10.0

9.31

3.3

1.2

10.0

5.76

Spread Spectrum

In SMPS devices, switching translates to higher

efficiency. Unfortunately, the switching leads to a much
noisier EMI profile. We can greatly decrease some of the
radiated emissions with some spread spectrum techniques.
Spread spectrum is used to reduce the peak electromagnetic
emissions of a switching regulator.

f

c

9f

c

7f

c

5f

c

3f

c

f

c

9f

c

7f

c

5f

c

3f

c

t

t

V

V

Time Domain

Frequency Domain

Unmodulated

The spread spectrum used in the NCV97310 is an

“up-spread” technique, meaning the switching frequency is
spread upward from the 2.0 MHz base frequency. For
example, a 5 % spread means that the switching frequency
is swept (spread) from 2.0 MHz up to 2.1 MHz in a linear
fashion – this is called the modulation depth. The rate at
which this spread takes place is called the modulation
frequency. For example, a 10 kHz modulation frequency
means that the frequency is swept from 2.0 MHz to 2.1 MHz
in 50

m

s and then back down from 2.1 MHz to 2.0 MHz in

50

m

s.

Summary of Contents for NCV97310MW33GEVB

Page 1: ...Iq operating mode the low voltage switchers are disabled and the standby rail is supplied by a low Iq LDO up to 150 mA with a typical Iq of 30 mA The LDO regulator is in parallel to the high voltage s...

Page 2: ...ULATOR 2 1V2 3V3 STEP DOWN REGULATOR 3 1V2 3V3 STEP DOWN VINL VOUT VBAT SW1 EN STBYB VIN2 SW2 SW3H FB2 FB3 EN2 EN3 VDRV1 BST1 ROSC OT WARNING VIN_UVLO ERRB GND2 RSTB1 RSTB2 TEMP VIN_OV RSTB1 RSTB2 RST...

Page 3: ...rn VOUT1 Positive 3 3 V dc output voltage LDO Switcher 1 VOUT2 Positive DC output voltage Switcher 2 VOUT3 Positive DC output voltage Switcher 3 EN Master enable input Includes jumper J3 to connect to...

Page 4: ...2 V Line Regulation VOUT1 IOUT1 1 0 A 0 03 Line Regulation VOUT2 IOUT2 1 0 A 0 01 Line Regulation VOUT3 IOUT3 1 0 A 0 001 Load Regulation VOUT1 VBAT 13 2 V 0 3 Load Regulation VOUT2 VBAT 13 2 V 0 02...

Page 5: ...1 EN 2 STBY 3 RDEPTH 4 RMOD 5 RST1 6 COMP1 7 ROSC 8 ERR 9 EN2 10 RST2 11 GND1 12 RST3 13 FB3 14 EN3 15 BST3 16 GND3 17 SW3L 18 SW3H 19 VDRV2 20 VIN3 21 VIN2 22 SW2 23 GND2 24 BST2 25 FB2 27 VOUT 28 V...

Page 6: ...of EN3 state and read 0 V 4 Connect a dc enable voltage within the 2 0 V to 36 V range between STBYB and GND This will exit low Iq mode and power up switcher 1 You may use jumper J2 to connect STBYB...

Page 7: ...ces switching translates to higher efficiency Unfortunately the switching leads to a much noisier EMI profile We can greatly decrease some of the radiated emissions with some spread spectrum technique...

Page 8: ...Frequency kHz 0 2 00 7 00 12 00 17 00 22 00 27 00 32 00 37 00 42 00 47 00 52 00 40 50 60 10 20 30 RDEPTH kW Modulation Depth FSW 0 0 0 40 50 60 10 20 30 Modulation Depth vs RDEPTH 5 0 10 0 15 0 20 0...

Page 9: ...iciency 1 8 V 0 10 20 30 40 50 60 70 80 90 100 0 5 0 1 1 5 2 2 5 Output Current A Efficiency VIN 5 0 V VIN 8 0 V VIN 3 3 V Figure 8 Efficiency for SW3 with a 1 2 V Output NCV97310 SW3 Efficiency 1 2 V...

Page 10: ...1 00 0 50 0 00 0 50 1 00 1 50 2 00 5 0 10 15 20 25 Input Voltage V Line Regulation 30 IOUT 100 mA IOUT 500 mA IOUT 1 0 A IOUT 2 0 A IOUT 3 0 A Figure 10 Line Regulation for SW2 with a 1 8 V Output NC...

Page 11: ...0 10 3 5 3 4 4 5 5 5 5 Input Voltage V Line Regulation IOUT 100 mA IOUT 500 mA IOUT 1 0 A IOUT 2 0 A Load Regulation Figure 12 Load Regulation for SW1 with a 3 3 V Output NCV97310 SW1 Load Regulation...

Page 12: ...Regulation 1 8 V 0 10 0 05 0 00 0 05 0 10 0 5 0 1 1 5 2 2 5 Output Current A Load Regulation VIN 3 3 V VIN 5 0 V VIN 8 0 V Figure 14 Load Regulation for SW3 with a 1 2 V Output NCV97310 SW3 Load Regul...

Page 13: ...DEPTH 4 RMOD 5 RST1 6 COMP1 7 ROSC 8 ERR 9 EN2 10 RST2 11 GND1 12 RST3 13 FB3 14 EN3 15 BST3 16 GND3 17 SW3L 18 SW3H 19 VDRV2 20 VIN3 21 VIN2 22 SW2 23 GND2 24 BST2 25 FB2 27 VOUT 28 VINL 29 BST1 30 V...

Page 14: ...NCV97310MW33GEVB http onsemi com 14 PCB LAYOUT Figure 15 Top View Figure 16 Bottom View...

Page 15: ...R71H105KA55L Yes CIN4 1 CAP CER 2 2 mF 50 V 10 X7R 1206 2 2 mF 10 1206 Murata Electronics North America GCM31CR71H225KA55L Yes CIN5 1 CAP ALUM 100 mF 50 V 20 SMD 100 mF 20 FK_V_E Chemi Con EMZA500ADA1...

Page 16: ...application or use of any product or circuit and specifically disclaims any and all liability including without limitation special consequential or incidental damages Typical parameters which may be p...

Reviews: