background image

SA58670A_2

© NXP B.V. 2008. All rights reserved.

Product data sheet

Rev. 02 — 23 October 2008

3 of 24

NXP Semiconductors

SA58670A

2.1 W/channel stereo class-D audio amplifier

6.

Pinning information

6.1 Pinning

6.2 Pin description

(1) Exposed Die Attach Paddle (DAP).

Fig 2.

Pin configuration for HVQFN20

002aad664

SA58670ABS

Transparent top view

OUTRN

PGND

OUTLN

PGND

PVDD

PVDD

OUTLP

OUTRP

G1

G0

n.c.

SDL

SDR

AVDD

n.c.

INLP

INLN

AGND

INRN

INRP

5

11

4

12

3

13

2

14

1

15

6

7

8

9

10

20

19

18

17

16

terminal 1

index area

DAP

(1)

Table 2.

Pin description

Symbol

Pin

Description

G1

1

gain select input 1

OUTLP

2

left channel positive output

PVDD

3

power supply voltage (level same as AVDD)

PGND

4

power ground

OUTLN

5

left channel negative output

n.c.

6

not connected

SDL

7

left channel shutdown input (active LOW)

SDR

8

right channel shutdown input (active LOW)

AVDD

9

analog supply voltage (level same as PVDD)

n.c.

10

not connected

OUTRN

11

right channel negative output

PGND

12

power ground

PVDD

13

power supply voltage (level same as AVDD)

OUTRP

14

right channel positive output

G0

15

gain select input 0

INRP

16

right channel positive input

INRN

17

right channel negative input

AGND

18

analog ground

Summary of Contents for SA58670A

Page 1: ...iency is excellent at 70 to 74 into 4 Ω and 84 to 88 into 8 Ω The SA58670A provides thermal and short circuit shutdown protection 2 Features n Output power u 2 1 W channel into 4 Ω at 5 0 V u 1 4 W channel into 8 Ω at 5 0 V u 720 mW channel into 8 Ω at 3 6 V n Supply voltage 2 5 V to 5 5 V n Independent shutdown control for each channel n Selectable gain 6 dB 12 dB 18 dB and 24 dB n High SVRR 77 d...

Page 2: ...ersion SA58670ABS HVQFN20 plastic thermal enhanced very thin quad flat package no leads 20 terminals body 4 4 0 85 mm SOT917 1 Refer to Table 6 for gain selection Fig 1 Block diagram 002aad663 SA58670A SDR 16 17 INRP INRN GAIN ADJUST 6 10 n c right input PWM H BRIDGE 14 11 OUTRP 3 13 PVDD OUTRN VDD 9 AVDD VDD 4 12 PGND 18 AGND INTERNAL OSCILLATOR 20 19 INLP INLN GAIN ADJUST left input PWM H BRIDGE...

Page 3: ...nal 1 index area DAP 1 Table 2 Pin description Symbol Pin Description G1 1 gain select input 1 OUTLP 2 left channel positive output PVDD 3 power supply voltage level same as AVDD PGND 4 power ground OUTLN 5 left channel negative output n c 6 not connected SDL 7 left channel shutdown input active LOW SDR 8 right channel shutdown input active LOW AVDD 9 analog supply voltage level same as PVDD n c 1...

Page 4: ...ble 2 Pin description continued Symbol Pin Description Table 3 Limiting values In accordance with the Absolute Maximum Rating System IEC 60134 1 Symbol Parameter Conditions Min Max Unit VDD supply voltage Active mode 0 3 6 0 V Shutdown mode 0 3 7 0 V VI input voltage pin SDL GND VDD V pin SDR GND VDD V other pins 0 3 VDD 0 3 V P power dissipation derating factor 41 6 mW K Tamb 25 C 5 2 W Tamb 75 C...

Page 5: ... cm common mode input voltage 0 5 VDD 0 8 V CMRR common mode rejection ratio inputs are shorted together VDD 2 5 V to 5 5 V 69 50 dB VIH HIGH level input voltage VDD 2 5 V to 5 5 V pins SDL SDR G0 G1 1 3 VDD V VIL LOW level input voltage VDD 2 5 V to 5 5 V pins SDL SDR G0 G1 0 0 35 V IIH HIGH level input current VDD 5 5 V VI VDD 50 µA IIL LOW level input current VDD 5 5 V VI 0 V 5 µA fsw switching...

Page 6: ... N 10 RL 8 Ω VDD 3 6 V 0 72 W RL 8 Ω VDD 5 0 V 1 4 W RL 4 Ω VDD 5 0 V 2 1 W THD N total harmonic distortion plus noise VDD 5 0 V Gv cl 6 dB f 1 kHz Po 0 5 W 0 11 Po 1 0 W 0 14 SVRR supply voltage ripple rejection Gv cl 6 dB f 217 Hz VDD 3 6 V 73 dB VDD 5 0 V 77 dB CMRR common mode rejection ratio VDD 5 0 V Gv cl 6 dB f 217 Hz 69 dB Zi input impedance Gv cl 6 dB 28 1 kΩ Gv cl 12 dB 17 3 kΩ Gv cl 18...

Page 7: ...D audio amplifier 10 Typical performance curves a Gv cl 24 dB b Gv cl 6 dB fi 1 kHz 1 VDD 2 5 V 2 VDD 3 6 V 3 VDD 5 0 V Fig 3 Total harmonic distortion plus noise as a function of output power RL 8 Ω 001aah484 Po W 10 5 10 1 10 1 10 4 10 2 10 3 10 1 1 10 102 10 2 THD N 1 2 3 001aah485 Po W 10 5 10 1 10 1 10 4 10 2 10 3 10 1 1 10 102 10 2 THD N 1 2 3 ...

Page 8: ...l stereo class D audio amplifier a Gv cl 24 dB b Gv cl 6 dB fi 1 kHz 1 VDD 2 5 V 2 VDD 3 6 V 3 VDD 5 0 V Fig 4 Total harmonic distortion plus noise as a function of output power RL 4 Ω 001aah486 Po W 10 5 10 1 10 1 10 4 10 2 10 3 10 1 1 10 102 10 2 THD N 1 2 3 001aah487 Po W 10 5 10 1 10 1 10 4 10 2 10 3 10 1 1 10 102 10 2 THD N 1 2 3 ...

Page 9: ...Vi 590 mV RMS 2 Po 240 mW Vi 490 mV RMS 3 Po 120 mW Vi 346 mV RMS a RL 4 Ω 1 Po 260 mW Vi 721 1 mV RMS 2 Po 180 mW Vi 600 mV RMS 3 Po 90 mW Vi 424 3 mV RMS b RL 8 Ω Gv cl 6 dB Fig 5 Total harmonic distortion plus noise as a function of frequency VDD 2 5 V 001aah488 f Hz 10 105 104 102 103 10 1 10 2 1 10 3 THD N 1 2 3 001aah489 f Hz 10 105 104 102 103 10 1 10 2 1 10 3 THD N 1 2 3 ...

Page 10: ...908 3 mV RMS 2 Po 550 mW Vi 741 6 mV RMS 3 Po 275 mW Vi 524 4 mV RMS a RL 4 Ω 1 Po 560 mW Vi 1 058 V RMS 2 Po 375 mW Vi 866 mV RMS 3 Po 190 mW Vi 616 4 mV RMS b RL 8 Ω Gv cl 6 dB Fig 6 Total harmonic distortion plus noise as a function of frequency VDD 3 6 V 001aah490 f Hz 10 105 104 102 103 10 1 10 2 1 10 3 THD N 1 2 3 001aah491 f Hz 10 105 104 102 103 10 1 10 2 1 10 3 THD N 1 2 3 ...

Page 11: ...1 285 V RMS 2 Po 1 1 W Vi 1 05 V RMS 3 Po 550 mW Vi 741 6 mV RMS a RL 4 Ω 1 Po 1 16 W Vi 1 523 V RMS 2 Po 775 mW Vi 1 245 V RMS 3 Po 380 mW Vi 871 8 mV RMS b RL 8 Ω Gv cl 6 dB Fig 7 Total harmonic distortion plus noise as a function of frequency VDD 5 0 V 001aah492 f Hz 10 105 104 102 103 10 1 10 2 1 10 3 THD N 1 2 3 001aah493 f Hz 10 105 104 102 103 10 2 10 1 1 10 10 3 THD N 1 2 3 ...

Page 12: ...to R channel 2 VDD 3 6 V R channel to L channel 3 VDD 5 0 V L channel to R channel 4 VDD 5 0 V R channel to L channel Fig 8 Crosstalk stepped all to one as a function of frequency 1 Left channel 2 Right channel Fig 9 Noise output voltage RMS value as a function of frequency 001aah495 f Hz 103 105 104 100 80 60 αct dB 120 3 2 1 4 f Hz 104 10 4 10 5 10 3 10 6 Vn o V 102 10 103 1 2 001aah497 ...

Page 13: ...ductors SA58670A 2 1 W channel stereo class D audio amplifier a RL 4 Ω b RL 8 Ω 1 VDD 2 5 V 2 VDD 3 6 V 3 VDD 5 0 V Fig 10 Crosstalk one to one as a function of frequency f kHz 2 20 001aah505 100 80 60 120 8 14 4 6 10 12 16 18 αct dB 2 1 3 f kHz 2 20 001aah506 100 80 60 αct dB 120 8 14 4 6 10 12 16 18 2 3 1 ...

Page 14: ...ltage as a function of shutdown voltage Fig 12 Supply current as a function of supply voltage VSDR VSDL V 0 3 2 1 001aah507 2 4 6 VDD V 0 2 5 V 3 6 V 5 V VDD V 2 5 5 5 4 5 3 5 001aah508 3 5 4 5 5 5 IDD mA 2 5 1 2 3 a RL 4 Ω b RL 8 Ω 1 VDD 2 5 V 2 VDD 3 6 V 3 VDD 5 0 V Fig 13 Supply current as a function of output power 0 1200 800 400 1600 IDD mA Po W 0 2 0 1 6 0 8 1 2 0 4 001aah509 1 2 3 0 600 400...

Page 15: ... Fig 14 Power dissipation as a function of output power 0 0 6 0 4 0 2 0 8 P W Po W 0 2 0 1 6 0 8 1 2 0 4 001aah511 1 3 2 0 0 3 0 2 0 1 0 4 P W Po W 0 1 6 1 2 0 4 0 8 001aah512 1 3 2 a RL 4 Ω b RL 8 Ω 1 VDD 5 0 V 2 VDD 3 6 V 3 VDD 2 5 V Fig 15 Output power efficiency as a function of output power 40 60 20 80 100 ηpo 0 Po W 0 2 0 1 6 0 8 1 2 0 4 001aah513 1 3 2 40 60 20 80 100 ηpo 0 Po W 0 1 6 1 2 0...

Page 16: ...ional decoupling using a larger capacitor 4 7 µF or greater may be done on the supply voltage connection on the PCB to filter low frequency signals Usually this is not required due to high PSRR of the SA58670A 11 2 Input capacitor selection The SA58670A does not require input coupling capacitors when used with a differential audio source that is biased from 0 5 V to VDD 0 8 V In other words the in...

Page 17: ...ciency The trace width and routing are also very important for power output and noise considerations For high current pins PVDD PGND and audio output the trace widths should be maximized to ensure proper performance and output power Use at least 500 µm wide traces For the input pins INRP INRN INLP and INLN the traces must be symmetrical and run side by side to maximize common mode cancellation 11 ...

Page 18: ...maximum power dissipation for 5 V supply and 4 Ω load If the junction temperature of the SA58670A rises above 150 C the thermal protection circuitry turns the SA58670A off this prevents damage to IC Using speakers greater than 4 Ω further enhances thermal performance and battery lifetime by reducing the output load current and increasing amplifier efficiency 11 6 Additional thermal information The...

Page 19: ...3 9 Dh 2 45 2 15 y1 4 1 3 9 2 45 2 15 e1 2 e2 2 0 30 0 18 0 05 0 00 0 05 0 1 DIMENSIONS mm are the original dimensions SOT917 1 MO 220 0 6 0 4 L 0 1 v 0 05 w 0 2 5 5 mm scale SOT917 1 HVQFN20 plastic thermal enhanced very thin quad flat package no leads 20 terminals body 4 x 4 x 0 85 mm A 1 max 05 10 08 05 10 31 E 1 D 1 Note 1 Plastic or metal protrusions of 0 075 mm maximum per side are not inclu...

Page 20: ...f liquid solder The wave soldering process is suitable for the following Through hole components Leaded or leadless SMDs which are glued to the surface of the printed circuit board Not all SMDs can be wave soldered Packages with solder balls and some leadless packages which have solder lands underneath the body cannot be wave soldered Also leaded SMDs with leads having a pitch smaller than 0 6 mm ...

Page 21: ...ooling down It is imperative that the peak temperature is high enough for the solder to make reliable solder joints a solder paste characteristic In addition the peak temperature must be low enough that the packages and or boards are not damaged The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 7 and 8 Moisture sensitivity precau...

Page 22: ...rature minimum soldering temperature maximum peak temperature MSL limit damage level peak temperature Table 9 Abbreviations Acronym Description DAP Die Attach Paddle DVD Digital Video Disc EMI ElectroMagnetic Interference ESR Equivalent Series Resistance LC inductor capacitor filter PC Personal Computer PCB Printed Circuit Board PDA Personal Digital Assistant PWM Pulse Width Modulator USB Universa...

Page 23: ...ipment nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury death or severe property or environmental damage NXP Semiconductors accepts no liability for inclusion and or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and or use is at the customer s own risk Applic...

Page 24: ...in description 3 7 Limiting values 4 8 Static characteristics 5 9 Dynamic characteristics 6 10 Typical performance curves 7 11 Application information 16 11 1 Power supply decoupling considerations 16 11 2 Input capacitor selection 16 11 3 PCB layout considerations 17 11 4 Filter free operation and ferrite bead filters 17 11 5 Efficiency and thermal considerations 18 11 6 Additional thermal inform...

Reviews: