Background Debug Module (S12SBDMV1)
MC9S12VRP Family Reference Manual Rev. 1.3
176
NXP Semiconductors
5.3.3
Family ID Assignment
The family ID is an 8-bit value located in the BDM ROM in active BDM (at global address: 0x3_FF0F).
The read-only value is a unique family ID which is 0xC2 for devices with an HCS12S core.
5.4
Functional Description
The BDM receives and executes commands from a host via a single wire serial interface. There are two
types of BDM commands: hardware and firmware commands.
Hardware commands are used to read and write target system memory locations and to enter active
background debug mode, see
Section 5.4.3, “BDM Hardware Commands”
. Target system memory
includes all memory that is accessible by the CPU.
Firmware commands are used to read and write CPU resources and to exit from active background debug
mode, see
Section 5.4.4, “Standard BDM Firmware Commands”
. The CPU resources referred to are the
accumulator (D), X index register (X), Y index register (Y), stack pointer (SP), and program counter (PC).
Hardware commands can be executed at any time and in any mode excluding a few exceptions as
highlighted (see
Section 5.4.3, “BDM Hardware Commands”
). BDM firmware commands can only be executed when the system is not secure and is in active
background debug mode (BDM).
5.4.1
Security
If the user resets into special single chip mode with the system secured, a secured mode BDM firmware
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup table.
The secure BDM firmware verifies that the on-chip Flash EEPROM are erased. This being the case, the
UNSEC and ENBDM bit will get set. The BDM program jumps to the start of the standard BDM firmware
and the secured mode BDM firmware is turned off and all BDM commands are allowed. If the Flash does
not verify as erased, the BDM firmware sets the ENBDM bit, without asserting UNSEC, and the firmware
enters a loop. This causes the BDM hardware commands to become enabled, but does not enable the
firmware commands. This allows the BDM hardware to be used to erase the Flash.
BDM operation is not possible in any other mode than special single chip mode when the device is secured.
The device can only be unsecured via BDM serial interface in special single chip mode. More information
regarding security is provided in the security section of the device documentation.
5.4.2
Enabling and Activating BDM
The system must be in active BDM to execute standard BDM firmware commands. BDM can be activated
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wire
interface, using a hardware command such as WRITE_BD_BYTE.
After being enabled, BDM is activated by one of the following
1
:
1. BDM is enabled and active immediately out of special single-chip reset.
Summary of Contents for MC9S12VRP64
Page 16: ...MC9S12VRP Family Reference Manual Rev 1 3 16 NXP Semiconductors ...
Page 46: ...Device Overview S12VRP Series MC9S12VRP Family Reference Manual Rev 1 3 46 NXP Semiconductors ...
Page 236: ...S12S Debug Module S12DBGV2 MC9S12VRP Family Reference Manual Rev 1 3 236 NXP Semiconductors ...
Page 244: ...Interrupt Module S12SINTV1 MC9S12VRP Family Reference Manual Rev 1 3 244 NXP Semiconductors ...
Page 358: ...Timer Module TIM16B2CV3 MC9S12VRP Family Reference Manual Rev 1 3 358 NXP Semiconductors ...
Page 436: ...Supply Voltage Sensor BATSV2 MC9S12VRP Family Reference Manual Rev 1 3 436 NXP Semiconductors ...
Page 528: ...NVM Electrical Parameters MC9S12VRP Family Reference Manual Rev 1 3 528 NXP Semiconductors ...
Page 530: ...Package Information MC9S12VRP Family Reference Manual Rev 1 3 530 NXP Semiconductors ...
Page 531: ...Package Information MC9S12VRP Family Reference Manual Rev 1 3 NXP Semiconductors 531 ...
Page 532: ...Package Information MC9S12VRP Family Reference Manual Rev 1 3 532 NXP Semiconductors ...