13.5.5.3 Checking channel preemption status
Preemption is available only when fixed arbitration is selected as the channel arbitration
mode. A preemptive situation is one in which a preempt-enabled channel runs and a
higher priority request becomes active. When the eDMA engine is not operating in fixed
channel arbitration mode, the determination of the actively running relative priority
outstanding requests become undefined. Channel priorities are treated as equal, that is,
constantly rotating, when Round-Robin Arbitration mode is selected.
The TCDn_CSR[ACTIVE] bit for the preempted channel remains asserted throughout
the preemption. The preempted channel is temporarily suspended while the preempting
channel executes one major loop iteration. If two TCDn_CSR[ACTIVE] bits are set
simultaneously in the global TCD map, a higher priority channel is actively preempting a
lower priority channel.
13.5.6 Channel Linking
Channel linking (or chaining) is a mechanism where one channel sets the
TCDn_CSR[START] bit of another channel (or itself), therefore initiating a service
request for that channel. When properly enabled, the EDMA engine automatically
performs this operation at the major or minor loop completion.
The minor loop channel linking occurs at the completion of the minor loop (or one
iteration of the major loop). The TCDn_CITER[E_LINK] field determines whether a
minor loop link is requested. When enabled, the channel link is made after each iteration
of the major loop except for the last. When the major loop is exhausted, only the major
loop channel link fields are used to determine if a channel link should be made. For
example, the initial fields of:
TCDn_CITER[E_LINK] = 1
TCDn_CITER[LINKCH] = 0xC
TCDn_CITER[CITER] value = 0x4
TCDn_CSR[MAJOR_E_LINK] = 1
TCDn_CSR[MAJOR_LINKCH] = 0x7
executes as:
1. Minor loop done
→
set TCD12_CSR[START] bit
2. Minor loop done
→
set TCD12_CSR[START] bit
3. Minor loop done
→
set TCD12_CSR[START] bit
4. Minor loop done, major loop done
→
set TCD7_CSR[START] bit
Initialization/application information
Kinetis KE1xZ256 Sub-Family Reference Manual, Rev. 3, 07/2018
260
NXP Semiconductors
Summary of Contents for Kinetis KE1xZ256
Page 2: ...Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 2 NXP Semiconductors...
Page 178: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 178 NXP Semiconductors...
Page 356: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 356 NXP Semiconductors...
Page 410: ...Interrupts Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 410 NXP Semiconductors...
Page 604: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 604 NXP Semiconductors...
Page 634: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 634 NXP Semiconductors...
Page 674: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 674 NXP Semiconductors...
Page 820: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 820 NXP Semiconductors...
Page 1030: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1030 NXP Semiconductors...
Page 1052: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1052 NXP Semiconductors...
Page 1066: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1066 NXP Semiconductors...
Page 1268: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1268 NXP Semiconductors...
Page 1314: ...Usage Guide Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1314 NXP Semiconductors...
Page 1316: ...Kinetis KE1xZ256 Sub Family Reference Manual Rev 3 07 2018 1316 NXP Semiconductors...