
Main Clock
Divider value:
1 - 256
1 clock cycle
t1
t2
t3
Divider Main Clock before
going to SSC logic
SSC output
Figure 10. Timing of the advance clock generation with SSC enabled
As shown in
, t1 and t2 determine the SSC output 1's period and t3 determines the SSC output 0's period.
shows the advanced clock generation, with SSC enabled when TSIx_SSC0[SSC_MODE] = 00/01b.
Switcℎing Clock =
Main Clock
SSC_PRESCALE_NUM + 1 × t1 + t2 + t3
Equation 2.
• When TSIx_SSC0[SSC_MODE] = 00b, t2 can be random (PRBS).
• When TSIx_SSC0[SSC_MODE] = 01b, t2 can be the range of TSIx_SSC2[MOVE_NOCHARGE_MIN] to
TSIx_SSC2[MOVE_NOCHARGE_MAX].
The generation of switching clock includes:
• The switching clock can be generated as a pseudo random clock using the Pseudo-Random Binary Sequence (PRBS)
method by setting TSI_SSC0[SSC_MODE] = 00. t2 is configured as the random width.
Table 6. TSI_SSC0[SSC_MODE] = 00, PRBS mode
Variable
Register
Clock cycle
Description
t1
TSIx_SSC0[BASE_NOCHARGE_NUM]
1 - 16
SSCHighWidth
t2
TSIx_SSC0[PRBS_OUTSEL]
2 - 15
SSCHighRandomWidth
t3
TSIx_SSC0[CHARGE_NUM]
1 - 16
SSCLowWidth
• Switching Clock can be generated in a configurable up-down counter method by setting TSI_SSC0[SSC_MODE] = 01. The
range of t2 is limited by TSI_SSC2[MOVE_NOCHARGE_MIN] and TSI_SSC2[MOVE_NOCHARGE_MAX].
Table 7. TSI_SSC0[SSC_MODE] = 01, up-down counter mode
Variable
Register
Clock cycle
Description
t1
TSI_SSC0[BASE_NOCHARGE_NUM]
1 - 16
SSCHighWidth
t2
TSI_SSC2[MOVE_NOCHARGE_MIN]
TSI_SSC2[MOVE_NOCHARGE_MAX]
MAX-MIN
SSCHighCounterWidth
Table continues on the next page...
NXP Semiconductors
TSI self-cap mode introduction
KE17Z Dual TSI User Guide, Rev. 0, 05 May 2022
User Guide
11 / 37