background image

AN10714_1

© NXP B.V. 2010. All rights reserved.

Application note

Rev. 01 — 26 January 2010 

7 of 21

NXP Semiconductors

AN10714

Using the BLF574 in the 88 MHz to 108 MHz FM band

2.3 Bill Of Materials

 

Table 1.

Bill of materials for the BLF574 input and output circuits 

PCB material: Taconic RF35; 

ε

r

 = 3.5; thickness 0.76 mm (30 mil). 

Figure 3

 shows the BLF574 PCB layout.

Designator

Description

Part number

Manufacturer

B1

63.5 mm (2.5 ”)/50 

Ω

 semirigid through 

ferrite

[1]

ferrite: BN-61-202

Amidon

semirigid: 047-50

Micro-Coax

B2

coax cable; 124.5 mm (4.9 ”)/50 

Ω

ID = 3.5814 mm (0.141 ") 

UT-141C-Form-F

Micro-Coax

C1

not connected

-

-

C2, C3

4700 pF ceramic chip capacitor

ATC700B472KW50X

American Technical Ceramics

C4, C7, C26, C29

μ

F ceramic chip capacitor

GRM31MR71H105KA88L

MuRata

C5, C6, C9

100 nF ceramic chip capacitor

GRM21BR71H104KA01L

MuRata

C8

620 pF ceramic chip capacitor

ATC100B621JT100X

American Technical Ceramics

C10, C11

390 pF ceramic chip capacitor

ATC100B220GT500X

American Technical Ceramics

C12, C13

180 pF ceramic chip capacitor

ATC100B181JT200X

American Technical Ceramics

C14

6.8 pF ceramic chip capacitor

ATC100B6R8CT500X

American Technical Ceramics

C15, C16

15 pF ceramic chip capacitor

ATC100B150JT500X

American Technical Ceramics

C17, C21, C31, C32

100 nF/250 V ceramic chip capacitor

GRM32DR72E104KW01L

MuRata

C18, C22, C33, C34

2.2 

μ

F/100 V ceramic chip capacitor

GRM32ER72A225KA35

MuRata

C19, C23

not connected

-

-

C20, C24

1000 

μ

F, 100 V electrolytic capacitor

EEV-TG1V102M

Panasonic

C25, C28

10 nF/35 V ceramic chip capacitor

GRM32ER7YA106KA12L

MuRata

C27, C30

100 nF ceramic chip capacitor

GRM31CR72E104KW03L

MuRata

D1

LED

APT2012CGCK

KingBright

L1

21.7 mm

 

×

 

1.75 mm (855 mil

 

×

 

69 mil)

-

-

L2

9.2 mm

 

×

 

1.65 mm (364 mil

 

×

 

65 mil)

-

-

L3

9.9 mm

 

×

 

1.75 mm (390 mil

 

×

 

69 mil)

-

-

L4, L5

6.2 mm

 

×

 

5.5 mm (243 mil

 

×

 

218 mil)

-

-

L6, L7

[2]

-

-

L8, L9

5.2 mm

 

×

 

5.54 mm (205 mil

 

×

 

218 mil)

-

-

L10, L11

13.0 mm

 

×

 

13.2 mm (511 mil

 

×

 

520 mil)

-

-

L12, L13

8.8 mm

 

×

 

13.2 mm (345 mil

 

×

 

520 mil)

-

-

L14, L15

8.83 mm

 

×

 

3.81 mm (348 mil

 

×

 

150 mil)

-

-

L16, L17

[2]

-

-

L18, L23

3 turns 14 gauge wire; 
ID = 7.9 mm (0.310 ”)

-

-

L19

21.2 mm

 

×

 

1.75 mm (834 mil

 

×

 

69 mil)

-

-

L20

9.5 mm

 

×

 

1.82 mm (373 mil

 

×

 

72 mil)

-

-

L21

13.99 mm

 

×

 

1.7 mm (551 mil

 

×

 

65 mil)

-

-

L22

ferroxcube bead

2743019447

Fair Rite

L24

50.8 mm (2 ”); 14 gauge wire; 
ID = 15.5 mm (0.61 ”)

[3]

-

-

L25

7.6 mm

 

×

 

15.3 mm (299 mil

 

×

 

604 mil)

-

-

Summary of Contents for AN10714

Page 1: ...t information Info Content Keywords BLF574 600 MHz performance high voltage LDMOS amplifier implementation Class B CW FM band pulsed power Abstract This application note describes the design and the p...

Page 2: ...2010 All rights reserved Application note Rev 01 26 January 2010 2 of 21 NXP Semiconductors AN10714 Using the BLF574 in the 88 MHz to 108 MHz FM band Revision history Rev Date Description 01 20100126...

Page 3: ...ken during the design of the high voltage process to ensure that the device achieves high ruggedness This is a critical parameter for successful broadcast operations The device can withstand greater t...

Page 4: ...the 88 MHz to 108 MHz FM band 2 Circuit diagrams and PCB layout 2 1 Circuit diagrams Fig 1 BLF574 input circuit schematic 88 MHz to 108 MHz 001aal304 R12 R7 D1 R8 R3 R9 R4 C4 R15 R14 R10 R1 R2 R5 R11...

Page 5: ...21 NXP Semiconductors AN10714 Using the BLF574 in the 88 MHz to 108 MHz FM band Fig 2 BLF574 output circuit schematic 88 MHz to 108 MHz RF out T3 T4 L25 L15 L14 L17 L19 L21 L16 L12 L13 B2 C24 C32 C31...

Page 6: ...ights reserved Application note Rev 01 26 January 2010 6 of 21 NXP Semiconductors AN10714 Using the BLF574 in the 88 MHz to 108 MHz FM band 2 2 BLF574 PCB layout The positions of C1 C19 and C23 are in...

Page 7: ...itor ATC100B181JT200X American Technical Ceramics C14 6 8 pF ceramic chip capacitor ATC100B6R8CT500X American Technical Ceramics C15 C16 15 pF ceramic chip capacitor ATC100B150JT500X American Technica...

Page 8: ...ale R5 75 resistor CRCW080575R0FKTA Vishay Dale R6 not connected R7 R9 1 1 k resistor CRCW08051K10FKEA Vishay Dale R10 11 k resistor CRCW080511K0FKEA Vishay Dale R11 5 1 resistor CRCW08055R1FKEA Visha...

Page 9: ...the junction temperature at high operating power and results in slightly better performance When greasing the part down care must be taken to ensure that the amount of grease is kept to an absolute mi...

Page 10: ...y with the most sensitive tuning elements listed first Effect of changing the output capacitors C12 and C13 This is a key tuning point in the circuit This point has the strongest influence on the trad...

Page 11: ...in gain and efficiency depending on the drain voltage conditions Table 2 Class B performance of the BLF574 at 50 V 600 W This table summarizes the Class B performance of the BLF574 at 50 V IDq 200 mA...

Page 12: ...second order harmonic performance BLF574 at 98 MHz IDq 200 mA 1 46 V 2 48 V 3 50 V 4 52 V Fig 7 Output gain and efficiency variation under different drain voltage conditions BLF574 at 98 MHz VDD 50 V...

Page 13: ...y 2010 13 of 21 NXP Semiconductors AN10714 Using the BLF574 in the 88 MHz to 108 MHz FM band VDD 50 V IDq 200 mA 1 88 MHz 2 98 MHz 3 108 MHz Fig 9 Second order harmonics as a function of output power...

Page 14: ...and output impedance per section Frequency MHz Input Zi Output Zo 25 2 020 j26 216 4 987 j0 241 50 2 020 j13 087 4 947 j0 477 75 2 020 j8 701 4 882 j0 705 100 2 020 j6 500 4 794 j0 922 125 2 021 j5 17...

Page 15: ...LF574 in the 88 MHz to 108 MHz FM band 6 Base plate drawings 6 1 Input base plate Fig 11 Input base plate drawing 001aak566 Unit mm A 0 B 10 922 C 37 211 D 45 847 E 65 278 F 76 200 G 6 350 H 9 068 I 1...

Page 16: ...108 MHz FM band 6 2 Device insert 1 0 5 mm Fig 12 Device insert drawing 001aak567 Unit mm A 0 B 10 922 C 65 278 D 76 200 E 6 350 F 11 328 G 5 156 H 10 312 I 4 978 J 11 328 K 10 185 L 1 143 M 8 N M5 1...

Page 17: ...ent density Once the device junction temperature is measured and in depth knowledge is obtained of the average operating current for the application the TTF can be calculated using Figure 14 and the r...

Page 18: ...ture rise Tr Pd Rth 257 W 0 4 C W 103 C Junction temperature Tj Th Tr 40 C 103 C 143 C Based on this the TTF can be estimated using a device greased down heatsink as follows The operating current is j...

Page 19: ...E4419B TENULINE 30 dB 1 kW RF LOW PASS FILTER NETWORK ANALYZER HP8753D POWER SENSOR HP8481A POWER SENSOR HP8481A SPINNER SWITCH 10 30 10 DRIVER AMPLIFIER Ophir 5127 COUPLER HP778D NARDA 3020A ANZAC CH...

Page 20: ...riptions at any time and without notice This document supersedes and replaces all information supplied prior to the publication hereof Suitability for use NXP Semiconductors products are not designed...

Page 21: ...rison for Class B and Class AB amplifiers 12 Fig 9 Second order harmonics as a function of output power against frequency 13 Fig 10 Device impedance convention 14 Fig 11 Input base plate drawing 15 Fi...

Reviews: