background image

LA000507G © 2006 Navman New Zealand. All rights reserved. Proprietary information and specifications subject to change without notice.

2.8 Environmental

The environmental operating conditions of the Jupiter 20 are as follows:

temperature:  –40ºC to +85ºC
humidity

:    

up to 95% non‑condensing or a wet bulb temperature of +35ºC

altitude:     –304 m to 18 000 m
vibration:     random vibration IEC 68‑2‑64
max. vehicle dynamics: 500 m/s
shock (non‑operating):  18 G peak, 5 ms

2.9 Compliances

The Jupiter 20 complies with the following:

Directive 2002/95/EC on the restriction of the use of certain hazardous substances in 

electrical and electronic equipment (RoHS)
CISPR22 and FCC: Part 15, Class B for radiated emissions
Automotive standard TS 16949
Manufactured in an ISO 9000 : 2000 accredited facility

2.10 Marking/Serialisation

The Jupiter 20 supports a code 128 barcode indicating the unit serial number. The Navman 

13‑character serial number convention is:

characters 1 and 2: 

year of manufacture (e.g. 06 = 2006, 07 = 2007)

characters 3 and 4: 

week of manufacture (1 to 52, starting first week in January)

character 5: 

manufacturer code

characters 6 and 7: 

product and type

character 8

: product revision

characters 9-13: 

sequential serial number

3.0 Performance characteristics

3.1 TTFF (Time To First Fix)

TTFF is the actual time required by a GPS receiver to achieve a position solution. This 

specification will vary with the operating state of the receiver, the length of time since the last 

position fix, the location of the last fix, and the specific receiver design.

3.1.1 Hot start

A hot start results from a software reset after a period of continuous navigation, or a return 

from a short idle period (i.e. a few minutes) that was preceded by a period of continuous 

navigation. In this state, all of the critical data (position, velocity, time, and satellite 

ephemeris) is valid to the specified accuracy and available in SRAM (Static Random Access 

Memory). Battery backup of the SRAM and RTC during loss of power is required to achieve a 

hot start.

3.1.2 Warm start

A warm start typically results from user‑supplied position and time initialisation data or 

continuous RTC operation with an accurate last known position available in memory. In this 

state, position and time data are present and valid but ephemeris data validity has expired.

3.1.3 Cold start

A cold start acquisition results when either position or time data is unknown. Almanac 

information is used to identify previously healthy satellites.



Summary of Contents for LA000508

Page 1: ...0 GPS receiver module Data Sheet Related documents Jupiter 20 Integrator s manual LA000508 Jupiter 20 Product brief LA000509 Jupiter Series development kit guide LA000645 SiRF Binary protocol referenc...

Page 2: ...ng 1PPS output 7 3 4 Battery backup SRAM RTC backup 7 3 5 TricklePower mode 7 3 5 1 Adaptive TricklePower mode 7 3 5 2 Push To Fix mode 7 3 6 Differential aiding 8 3 6 1 Differential GPS DGPS 8 3 6 2...

Page 3: ...compliance 16 9 6 Disposal 16 10 0 Ordering information 17 11 0 Glossary and acronyms 17 Figures Figure 2 1 Jupiter 20 module architecture 4 Figure 8 1 Jupiter 20 mechanical layout 15 Tables Table 3...

Page 4: ...ironments The interface configuration allows incorporation into many existing devices and legacy designs The Jupiter 20 receiver decodes and processes signals from all visible GPS satellites These sat...

Page 5: ...oved if the battery backup is connected Reset generator There are two voltage threshold reset generators in the Jupiter 20 The first provides a reset to the baseband block if the main power drops belo...

Page 6: ...ype character 8 product revision characters 9 13 sequential serial number 3 0 Performance characteristics 3 1 TTFF Time To First Fix TTFF is the actual time required by a GPS receiver to achieve a pos...

Page 7: ...reduce the average power consumption The main power is supplied to the module continuously An internal timer wakes the processor from sleep mode The module computes a navigation position fix after whi...

Page 8: ...e available or when a fixed altitude value can be used to produce an acceptable navigation solution the receiver will enter 2D navigation mode using a fixed value of altitude determined by the host Fo...

Page 9: ...t a velocity greater than 5 km h Table 3 4 Position and velocity accuracy 4 0 Electrical requirements 4 1 Power supply 4 1 1 Primary power The Jupiter 20 GPS receiver is designed to operate from a sin...

Page 10: ...is antenna should be in the range of 20dB to 30dB 4 1 7 Burnout protection The receiver accepts without risk of damage a signal of 10dBm from 0 to 2GHz carrier frequency except in band 1560 to 1590 MH...

Page 11: ...SPI bus VIH min 2 0V VIH max PWR_IN 0 1V VIL min 0 1V VIL max 0 8V VOH min at IOH 2mA 2 0V VOH max PWR_IN VOL min 0 VOL max at IOL 2mA 1 0V Reset input max capacitance Cmax 100pF input current max 600...

Page 12: ...igh 10 GND P ground 11 GND P ground 12 GND P ground 13 GND P ground 14 GND P ground 15 GND P ground 16 GND P ground 17 RF_IN I antenna signal input 18 GND P ground 19 V_ANT P external power supply for...

Page 13: ...ach NMEA message is contained in the Navman NMEA reference manual MN000315 NMEA message J20 J20S J20D GGA 1s 1s 1s GSA 1s 1s 1s GSV 1s 1s 1s RMC 1s 1s 1s VTG 1s 1s 1s GLL 1s 1s 1s ZDA 1s N A N A PTTK...

Page 14: ...Acquires satellites and continues tracking in extremely low signal environments yes Low signal navigation Continues navigating in extremely low signal environments yes 1 PPS A timing signal generated...

Page 15: ...The Jupiter 20 Development kit series assists in the integration of the Jupiter 20 module in custom applications The Development kit contains all of the necessary hardware and software to carry out a...

Page 16: ...C standard J STD 033 Handling Packing Shipping and Use of Moisture Reflow Sensitive Surface Mount Devices 9 3 ESD sensitivity The Jupiter 20 GPS receiver contains class 1 devices and is ESDS ElectroSt...

Page 17: ...receivers within the same general geographic area GDOP Geometric Dilution of Precision A factor used to describe the effect of the satellite geometry on the position and time accuracy of the GPS recei...

Page 18: ...S WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED RELATING TO SALE AND OR USE OF NAVMAN PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE CONSEQUENTIAL O...

Reviews: