background image

tracking will be directly proportional to the unbalance in the
quiescent output voltage. An optional potentiometer may be
placed at pin 1 as shown in

Figure 19 to null output offset.

The unbalanced current output for the circuit of

Figure 18 is

limited by the power dissipation of the package.

In the case of sustained unbalanced excess loads, the de-
vice will go into thermal limiting as the temperature sensing
circuit begins to function. For instantaneous high current
loads or short circuits the device limits the output current to
approximately 1.3 amperes until thermal shut-down takes
over or until the fault is removed.

HIGH INPUT IMPEDANCE CIRCUIT

The junction FET isolation circuit shown in

Figure 20 raises

the input impedance to 22 M

X

for low frequency input sig-

nals. The gate to drain capacitance (2 pF maximum for the
KE4221 shown) of the FET limits the input impedance as
frequency increases.

TL/H/7380 – 23

FIGURE 20

At 20 kHz the reactance of this capacitor is approximately

b

j4 M

X

giving a net input impedance magnitude of 3.9 M

X

.

The values chosen for R

1

, R

2

and C

1

provide an overall

circuit gain of at least 45 for the complete range of parame-
ters specified for the KE4221.

When using another FET device the relevant design equa-
tions are as follows:

A

V

e

#

R

1

R

1

a

1

g

m

J

(50)

(7)

g

m

e

g

m0

#

1

b

V

GS

V

p

J

(8)

V

GS

e

I

DS

R

1

(9)

I

DS

e

I

DSS

#

1

b

V

GS

V

P

J

2

(10)

The maximum value of R

2

is determined by the product of

the gate reverse leakage I

GSS

and R

2

. This voltage should

be 10 to 100 times smaller than V

P

. The output impedance

of the FET source follower is:

R

o

e

1

g

m

(11)

so that the determining resistance for the interstage RC
time constant is the input resistance of the LM380.

BOOSTED GAIN USING POSITIVE FEEDBACK

For applications requiring gains higher than the internally
set gain of 50, it is possible to apply positive feedback
around the LM380 for closed loopgains of up to 300.

Figure

21 shows a practical example of an LM380 in a gain of 200

circuit.

TL/H/7380 – 24

FIGURE 21. Boosted Gain of 200

Using Positive Feedback

The equation describing the closed loop gain is:

A

VCL

e

b

A

V(

0

)

1

b

A

V(

0

)

1

a

R

1

R

2

(12)

where A

V(

0

)

is complex at high frequencies but is nominally

the 40 to 60 specified on the data sheet for the pass band
of the amplifier. If 1

a

R

1

/R

2

approaches the value of

A

V(

0

)

, the denominator of equation 12 approaches zero, the

closed loop gain increases toward infinity, and the circuit
oscillates. This is the reason for limiting the closed loop gain
values to 300 or less.

Figure 22 shows the loaded and un-

loaded bode plot for the circuit shown in

Figure 21 .

TL/H/7380 – 25

FIGURE 22. Boosted Gain Bode Plot

The 24 pF capacitor C

2

shown on

Figure 21 was added to

give an overdamped square wave response under full load
conditions. It causes a high frequency roll-off of:

f

2

e

1

2

q

R

2

C

2

(13)

The circuit of

Figure 21 will have a very long (1000 sec) turn

on time if R

L

is not present, but only a 0.01 second turn on

time with an 8

X

load.

7

Summary of Contents for LM380

Page 1: ... half supply since R1 e 2 R2 Figure 1 The second stage is a common emitter voltage gain amplifi er with a current source load Internal compensation is pro vided by the pole splitting capacitor CÊ Pole splitting com pensation is used to preserve wide power bandwidth 100 kHz at 2W 8X The output is a quasi complementary pair emitter follower The amplifier gain is internally fixed to 34 dB or 50 This ...

Page 2: ...kage will support 3 watts dissipation at 50 C am bient or 3 7 watts at 25 C ambient Figure 2 shows the maximum package dissipation versus ambient temperature for various amounts of heat sinking TL H 7380 2 FIGURE 2 Device Dissipation vs Ambient Temperature Figures 3a b and c show device dissipation versus output power for various supply voltages and loads TL H 7380 3 FIGURE 3a Device Dissipation v...

Page 3: ...ting input is used the inverting input is left floating When the inverting input is used and the non in verting input is left floating the amplifier may be found to be sensitive to board layout since stray coupling to the floating input is positive feedback This can be avoided by employ ing one of three alternatives 1 AC grounding the unused input with a small capacitor This is preferred when usin...

Page 4: ...ume and Tone Control This common mode volume control can be combined with a common mode tone control as seen in Figure 10 This circuit has a distinct advantage over the circuit of Fig ure 7 when transducers of high source impedance are used in that the full input impedance of the amplifier is realized It also has an advantage with transducers of low source im pedance since the signal attenuation o...

Page 5: ...ereby increasing the power capability by a factor of four over the single amplifier However in most cases the package dissipation will be the first parameter limiting power delivered to the load When this is the case the power capability of the bridge will be only twice that of TL H 7380 17 FIGURE 15A 8X Load the single amplifier Figures 15A and B show output power versus device package dissipatio...

Page 6: ...r T1 A turns ratio of 25 and a device gain of 50 allows a maxi mum loop gain of 1250 RV provides a common mode volume control Switching S1 to the listen position reverses the role of the master and remote speakers LOW COST DUAL SUPPLY The circuit shown in Figure 19 demonstrates a minimum parts count method of symmetrically splitting a supply volt age Unlike the normal R C and power zener diode tec...

Page 7: ... value of R2 is determined by the product of the gate reverse leakage IGSS and R2 This voltage should be 10 to 100 times smaller than VP The output impedance of the FET source follower is Ro e 1 gm 11 so that the determining resistance for the interstage RC time constant is the input resistance of the LM380 BOOSTED GAIN USING POSITIVE FEEDBACK For applications requiring gains higher than the inter...

Page 8: ...ions for use provided in the labeling can effectiveness be reasonably expected to result in a significant injury to the user National Semiconductor National Semiconductor National Semiconductor National Semiconductor Corporation Europe Hong Kong Ltd Japan Ltd 1111 West Bardin Road Fax a49 0 180 530 85 86 13th Floor Straight Block Tel 81 043 299 2309 Arlington TX 76017 Email cnjwge tevm2 nsc com Oc...

Reviews: