background image

Application Hints

INPUT CAPACITOR (C

IN

)

To maintain stability, the regulator input pin must be by-
passed with at least a 47 µF electrolytic capacitor. The
capacitor’s leads must be kept short, and located near the
regulator.

If the operating temperature range includes temperatures
below −25˚C, the input capacitor value may need to be
larger. With most electrolytic capacitors, the capacitance
value decreases and the ESR increases with lower tempera-
tures and age. Paralleling a ceramic or solid tantalum ca-
pacitor will increase the regulator stability at cold tempera-
tures. For maximum capacitor operating lifetime, the
capacitor’s RMS ripple current rating should be greater than

INDUCTOR SELECTION

All switching regulators have two basic modes of operation:
continuous and discontinuous. The difference between the
two types relates to the inductor current, whether it is flowing
continuously, or if it drops to zero for a period of time in the
normal switching cycle. Each mode has distinctively different
operating characteristics, which can affect the regulator per-
formance and requirements.

The LM2575 (or any of the Simple Switcher family) can be
used for both continuous and discontinuous modes of opera-
tion.

The inductor value selection guides in

Figure 3

through

Figure 7

were designed for buck regulator designs of the

continuous inductor current type. When using inductor val-
ues shown in the inductor selection guide, the peak-to-peak
inductor ripple current will be approximately 20% to 30% of
the maximum DC current. With relatively heavy load cur-
rents, the circuit operates in the continuous mode (inductor
current always flowing), but under light load conditions, the
circuit will be forced to the discontinuous mode (inductor
current falls to zero for a period of time). This discontinuous
mode of operation is perfectly acceptable. For light loads
(less than approximately 200 mA) it may be desirable to
operate the regulator in the discontinuous mode, primarily
because of the lower inductor values required for the discon-
tinuous mode.

The selection guide chooses inductor values suitable for
continuous mode operation, but if the inductor value chosen
is prohibitively high, the designer should investigate the
possibility of discontinuous operation. The computer design
software

Switchers Made Simple

will provide all component

values for discontinuous (as well as continuous) mode of
operation.

Inductors are available in different styles such as pot core,
toriod, E-frame, bobbin core, etc., as well as different core
materials, such as ferrites and powdered iron. The least
expensive, the bobbin core type, consists of wire wrapped
on a ferrite rod core. This type of construction makes for an
inexpensive inductor, but since the magnetic flux is not com-

pletely contained within the core, it generates more electro-
magnetic interference (EMI). This EMI can cause problems
in sensitive circuits, or can give incorrect scope readings
because of induced voltages in the scope probe.

The inductors listed in the selection chart include ferrite pot
core construction for AIE, powdered iron toroid for Pulse
Engineering, and ferrite bobbin core for Renco.

An inductor should not be operated beyond its maximum
rated current because it may saturate. When an inductor
begins to saturate, the inductance decreases rapidly and the
inductor begins to look mainly resistive (the DC resistance of
the winding). This will cause the switch current to rise very
rapidly. Different inductor types have different saturation
characteristics, and this should be kept in mind when select-
ing an inductor.

The inductor manufacturer’s data sheets include current and
energy limits to avoid inductor saturation.

INDUCTOR RIPPLE CURRENT

When the switcher is operating in the continuous mode, the
inductor current waveform ranges from a triangular to a
sawtooth type of waveform (depending on the input voltage).
For a given input voltage and output voltage, the peak-to-
peak amplitude of this inductor current waveform remains
constant. As the load current rises or falls, the entire saw-
tooth current waveform also rises or falls. The average DC
value of this waveform is equal to the DC load current (in the
buck regulator configuration).

If the load current drops to a low enough level, the bottom of
the sawtooth current waveform will reach zero, and the
switcher will change to a discontinuous mode of operation.
This is a perfectly acceptable mode of operation. Any buck
switching regulator (no matter how large the inductor value
is) will be forced to run discontinuous if the load current is
light enough.

OUTPUT CAPACITOR

An output capacitor is required to filter the output voltage and
is needed for loop stability. The capacitor should be located
near the LM2575 using short pc board traces. Standard
aluminum electrolytics are usually adequate, but low ESR
types are recommended for low output ripple voltage and
good stability. The ESR of a capacitor depends on many
factors, some which are: the value, the voltage rating, physi-
cal size and the type of construction. In general, low value or
low voltage (less than 12V) electrolytic capacitors usually
have higher ESR numbers.

The amount of output ripple voltage is primarily a function of
the ESR (Equivalent Series Resistance) of the output ca-
pacitor and the amplitude of the inductor ripple current
(

I

IND

). See the section on inductor ripple current in Applica-

tion Hints.

The lower capacitor values (220 µF–680 µF) will allow typi-
cally 50 mV to 150 mV of output ripple voltage, while larger-
value capacitors will reduce the ripple to approximately 20
mV to 50 mV.

Output Ripple Voltage = (

I

IND

) (ESR of C

OUT

)

To further reduce the output ripple voltage, several standard
electrolytic capacitors may be paralleled, or a higher-grade
capacitor may be used. Such capacitors are often called
“high-frequency,” “low-inductance,” or “low-ESR.” These will
reduce the output ripple to 10 mV or 20 mV. However, when
operating in the continuous mode, reducing the ESR below
0.05

can cause instability in the regulator.

LM1575/LM2575/LM2575HV

www.national.com

18

Summary of Contents for LM1575 Series

Page 1: ...d 10 on the oscillator frequency External shutdown is included featuring 50 A typical standby cur rent The output switch includes cycle by cycle current limit ing as well as thermal shutdown for full...

Page 2: ...red Leads 5 Lead TO 220 T 01147522 Top View LM2575T XX or LM2575HVT XX See NS Package Number T05A 01147523 Top View 01147524 Side View LM2575T XX Flow LB03 or LM2575HVT XX Flow LB03 See NS Package Num...

Page 3: ...Side View LM2575S XX or LM2575HVS XX See NS Package Number TS5B Ordering Information Package NSC Standard High Temperature Type Package Voltage Rating Voltage Rating Range Number 40V 60V 5 Lead TO 22...

Page 4: ...LM2575HVN ADJ 24 Pin M24B LM2575M 5 0 LM2575HVM 5 0 Surface Mount LM2575M 12 LM2575HVM 12 LM2575M 15 LM2575HVM 15 LM2575M ADJ LM2575HVM ADJ 5 Lead TO 263 TS5B LM2575S 3 3 LM2575HVS 3 3 Surface Mount L...

Page 5: ...UT Output Voltage VIN 12V ILOAD 0 2A 3 3 V Circuit of Figure 2 3 267 3 234 V Min 3 333 3 366 V Max VOUT Output Voltage 4 75V VIN 40V 0 2A ILOAD 1A 3 3 V LM1575 LM2575 Circuit of Figure 2 3 200 3 168 3...

Page 6: ...4 11 52 11 52 11 40 V Min Circuit of Figure 2 12 36 12 48 12 48 12 60 V Max VOUT Output Voltage 0 2A ILOAD 1A 12 V LM2575HV 15V VIN 60V 11 64 11 52 11 52 11 40 V Min Circuit of Figure 2 12 42 12 54 12...

Page 7: ...rical Characteristics Specifications with standard type face are for TJ 25 C and those with boldface type apply over full Operating Tempera ture Range Unless otherwise specified VIN 12V for the 3 3V 5...

Page 8: ...tor input and output capacitors can affect switching regulator system performance When the LM1575 LM2575 is used as shown in the Figure 2 test circuit system performance will be as shown in system par...

Page 9: ...s Circuit of Figure 2 Normalized Output Voltage Line Regulation 01147532 01147533 Dropout Voltage Current Limit 01147534 01147535 Quiescent Current Standby Quiescent Current 01147536 01147537 LM1575 L...

Page 10: ...Continued Oscillator Frequency Switch Saturation Voltage 01147538 01147539 Efficiency Minimum Operating Voltage 01147540 01147541 Quiescent Current vs Duty Cycle Feedback Voltage vs Duty Cycle 011475...

Page 11: ...Layout Guidelines As in any switching regulator layout is very important Rap idly switching currents associated with wiring inductance generate voltage transients which can cause problems For minimal...

Page 12: ...tic COUT 330 F 25V Aluminum Electrolytic D1 Schottky 11DQ06 L1 330 H PE 52627 for 5V in 3 3V out use 100 H PE 92108 Adjustable Output Voltage Version 01147509 where VREF 1 23V R1 between 1k and 5k R1...

Page 13: ...the dominate pole pair of the switching regulator loop For stable operation and an acceptable output ripple voltage approximately 1 of the output voltage a value between 100 F and 470 F is recommended...

Page 14: ...For Continuous Mode Operation 01147510 FIGURE 3 LM2575 HV 3 3 01147511 FIGURE 4 LM2575 HV 5 0 01147512 FIGURE 5 LM2575 HV 12 01147513 FIGURE 6 LM2575 HV 15 01147514 FIGURE 7 LM2575 HV ADJ LM1575 LM25...

Page 15: ...Inductor Value 470 H Choose from AIE part 430 0634 Pulse Engineering part PE 53118 or Renco part RL 1961 3 Output Capacitor Selection COUT A The value of the output capacitor together with the induct...

Page 16: ...Capacitor CIN A 100 F aluminum electrolytic capacitor located near the input and ground pins provides sufficient bypassing To further simplify the buck regulator design procedure National Semiconducto...

Page 17: ...E 92108 RL2444 L150 150 H 67127010 PE 53113 RL1954 L220 220 H 67127020 PE 52626 RL1953 L330 330 H 67127030 PE 52627 RL1952 L470 470 H 67127040 PE 53114 RL1951 L680 680 H 67127050 PE 52629 RL1950 H150...

Page 18: ...eadings because of induced voltages in the scope probe The inductors listed in the selection chart include ferrite pot core construction for AIE powdered iron toroid for Pulse Engineering and ferrite...

Page 19: ...ON OFF pin should be grounded or driven with a low level TTL voltage typically below 1 6V To put the regulator into standby mode drive this pin with a high level TTL or CMOS signal The ON OFF pin can...

Page 20: ...sing a delayed turn on or an undervoltage lockout circuit described in the next section would allow the input voltage to rise to a high enough level before the switcher would be allowed to turn on Bec...

Page 21: ...cessively large RC time constants can cause problems with input voltages that are high in 60 Hz or 120 Hz ripple by coupling the ripple into the ON OFF pin ADJUSTABLE OUTPUT LOW RIPPLE POWER SUPPLY A...

Page 22: ...less than 0 15 EQUIVALENT SERIES INDUCTANCE ESL The pure inductance component of a capacitor see Figure 16 The amount of inductance is determined to a large extent on the capacitor s construction In a...

Page 23: ...y more magnetic flux When an inductor saturates the induc tor appears less inductive and the resistive component domi nates Inductor current is then limited only by the DC resis tance of the wire and...

Page 24: ...5J 3 3 883 LM1575J 5 0 883 LM1575J 12 883 LM1575J 15 883 or LM1575J ADJ 883 NS Package Number J16A 14 Lead Wide Surface Mount WM Order Number LM2575M 5 0 LM2575HVM 5 0 LM2575M 12 LM2575HVM 12 LM2575M...

Page 25: ...5 0 LM2575N 12 LM2575HVN 12 LM2575N 15 LM2575HVN 15 LM2575N ADJ or LM2575HVN ADJ NS Package Number N16A 5 Lead TO 220 T Order Number LM2575T 3 3 LM2575HVT 3 3 LM2575T 5 0 LM2575HVT 5 0 LM2575T 12 LM25...

Page 26: ...oted Continued TO 263 Molded 5 Lead Surface Mount Order Number LM2575S 3 3 LM2575HVS 3 3 LM2575S 5 0 LM2575HVS 5 0 LM2575S 12 LM2575HVS 12 LM2575S 15 LM2575HVS 15 LM2575S ADJ or LM2575HVS ADJ NS Packa...

Page 27: ...easonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness BANNED SUBSTANCE COMPLIANCE National Semiconductor certifies that the products and...

Reviews: