Chapter 2. ColdFire Core
2-21
Organization of Data in Registers
2.4.1 Organization of Integer Data Formats in Registers
Figure 2-7 shows the integer format for data registers. Each integer data register is 32 bits
wide. Byte and word operands occupy the lower 8- and 16-bit portions of integer data
registers, respectively. Longword operands occupy the entire 32 bits of integer data
registers. A data register that is either a source or destination operand only uses or changes
the appropriate lower 8 or 16 bits in byte or word operations, respectively. The remaining
high-order portion does not change. The least significant bit (lsb) of all integer sizes is zero,
the most-significant bit (msb) of a longword integer is 31, the msb of a word integer is 15,
and the msb of a byte integer is 7.
The instruction set encodings do not allow the use of address registers for byte-sized
operands. When an address register is a source operand, either the low-order word or the
entire longword operand is used, depending on the operation size. Word-length source
operands are sign-extended to 32 bits and then used in the operation with an address register
destination. When an address register is a destination, the entire register is affected,
regardless of the operation size. Figure 2-8 shows integer formats for address registers.
The size of control registers varies according to function. Some have undefined bits
reserved for future definition by Motorola. Those particular bits read as zeros and must be
written as zeros for future compatibility.
All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, regardless of privilege mode.
31
30
1
0
msb
lsb
Bit (0
≤
bit number
≤
31)
31
8
7
6
1
0
Not used
msb
Low order byte
lsb
Byte (8 bits)
31
16
15
14
1
0
Not used
msb
Lower order word
lsb
Word (16 bits)
31
30
1
0
msb
Longword
lsb
Longword (32 bits)
Figure 2-7. Organization of Integer Data Formats in Data Registers
31
16
15
0
Sign-Extended
16-Bit Address Operand
31
0
Full 32-Bit Address Operand
Figure 2-8. Organization of Integer Data Formats in Address Registers
Summary of Contents for DigitalDNA ColdFire MCF5272
Page 1: ...MCF5272UM D Rev 0 02 2001 MCF5272 ColdFire Integrated Microprocessor User s Manual ...
Page 38: ...xxxviii MCF5272 User s Manual TABLES Table Number Title Page Number ...
Page 58: ...1 10 MCF5272 User s Manual MCF5272 Specific Features ...
Page 90: ...2 42 MCF5272 User s Manual Exception Processing Overview ...
Page 96: ...3 6 MCF5272 User s Manual MAC Instruction Execution Timings ...
Page 158: ...5 46 MCF5272 User s Manual Motorola Recommended BDM Pinout ...
Page 184: ...7 12 MCF5272 User s Manual Interrupt Controller Registers ...
Page 338: ...13 44 MCF5272 User s Manual Application Examples ...
Page 414: ...18 6 MCF5272 User s Manual PWM Programming Model ...
Page 452: ...19 38 MCF5272 User s Manual Power Supply Pins ...
Page 482: ...20 30 MCF5272 User s Manual Reset Operation ...
Page 492: ...21 10 MCF5272 User s Manual Non IEEE 1149 1 Operation ...