Maxim Dallas DS83C530 Specification Sheet Download Page 23

DS87C530/DS83C530 EPROM/ROM Microcontrollers with Real-Time Clock 

 

 

23 of 47

  

IDLE MODE 

Setting the lsb of the Power Control register (PCON; 87h) invokes the Idle mode. Idle will leave internal 
clocks, serial ports and timers running. Power consumption drops because the CPU is not active. Since 
clocks are running, the Idle power consumption is a function of crystal frequency. It should be 
approximately one-half the operational power at a given frequency. The CPU can exit the Idle state with 
any interrupt or a reset. Idle is available for backward software compatibility. The system can now reduce 
power consumption to below Idle levels by using PMM1 or PMM2 and running NOPs. 
 

STOP MODE ENHANCEMENTS 

Setting bit 1 of the Power Control register (PCON; 87h) invokes the Stop mode. Stop mode is the lowest 
power state since it turns off all internal clocking. The I

CC

 of a standard Stop mode is approximately 1 

m

but is specified in the Electrical Specifications. The CPU will exit Stop mode from an external interrupt 
or a reset condition. Internally generated interrupts (timer, serial port, watchdog) are not useful since they 
require clocking activity. One exception is that a RTC interrupt can cause the device to exit Stop mode. 
This provides a very power efficient way of performing infrequent yet periodic tasks. 
 
The DS87C530/DS83C530 provide two enhancements to the Stop mode. As documented below, the 
device provides a bandgap reference to determine Power-fail Interrupt and Reset thresholds. The default 
state is that the bandgap reference is off while in Stop mode. This allows the extremely low-power state 
mentioned above. A user can optionally choose to have the bandgap enabled during Stop mode. With the 
bandgap reference enabled, PFI and Power-fail Reset are functional and are a valid means for leaving 
Stop mode. This allows software to detect and compensate for a brownout or power supply sag, even 
when in Stop mode. 
 
In Stop mode with the bandgap enabled, I

CC

 will be approximately 50

m

A compared with 1

m

A with the 

bandgap off. If a user does not require a Power-fail Reset or Interrupt while in Stop mode, the bandgap 
can remain disabled. Only the most power sensitive applications should turn off the bandgap, as this 
results in an uncontrolled power-down condition.  
 
The control of the bandgap reference is located in the Extended Interrupt Flag register (EXIF; 91h). 
Setting BGS (EXIF.0) to a 1 will keep the bandgap reference enabled during Stop mode. The default or 
reset condition is with the bit at a logic 0. This results in the bandgap being off during Stop mode. Note 
that this bit has no control of the reference during full power, PMM, or Idle modes. 
 
The second feature allows an additional power saving option while also making Stop easier to use. This is 
the ability to start instantly when exiting Stop mode. It is the internal ring oscillator that provides this 
feature. This ring can be a clock source when exiting Stop mode in response to an interrupt. The benefit 
of the ring oscillator is as follows. 
 
Using Stop mode turns off the crystal oscillator and all internal clocks to save power. This requires that 
the oscillator be restarted when exiting Stop mode. Actual startup time is crystal-dependent, but is 
normally at least 4ms. A common recommendation is 10ms. In an application that will wake up, perform 
a short operation, then return to sleep, the crystal startup can be longer than the real transaction. However, 
the ring oscillator will start instantly. Running from the ring, the user can perform a simple operation and 
return to sleep before the crystal has even started. If a user selects the ring to provide the startup clock and 
the processor remains running, hardware will automatically switch to the crystal once a power-on reset 
interval (65,536 clocks) has expired. Hardware uses this value to assure proper crystal start even though 
power is not being cycled.  

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

      

WW

W.100

Y.COM.TW

 

 

Summary of Contents for Dallas DS83C530

Page 1: ...ROM Microcontrollers with Real Time Clock The High Speed Microcontroller User s Guide must be used in conjunction with this data sheet Download it at www maxim ic com microcontrollers WWW 1 WWW 100Y...

Page 2: ...100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y CO...

Page 3: ...ted Please contact your local Dallas Semiconductor sales representative for ordering information Note The DS87C530 DS83C530 are monolithic devices A user must supply an external battery or super cap a...

Page 4: ...M TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW...

Page 5: ...own that remains on until either a 1 is written or a reset occurs Writing a 1 after the port has been at 0 will cause a strong transition driver to turn on followed by a weaker sustaining pullup Once...

Page 6: ...7 RD External Data Memory Read Strobe 42 35 EA External Access Input Active Low Connect to ground to use an external ROM Internal RAM is still accessible as determined by register settings Connect to...

Page 7: ...to 1 improved opcodes makes dramatic speed improvements likely for any code These architecture improvements produce a peak instruction cycle in 121ns 8 25 MIPs The Dual Data Pointer feature also allow...

Page 8: ...in the standard 80C52 are duplicated in this device Table 1 shows the register addresses and bit locations The High Speed Microcontroller User s Guide describes all SFRs WWW 1 WWW 100Y COM WWW 100Y C...

Page 9: ...WW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM...

Page 10: ...g from 0000 The RTC features a programmable alarm condition A user selects the alarm time When the RTC reaches the selected value it sets a flag This will cause an interrupt if enabled even in Stop mo...

Page 11: ...Hz crystal as the RTC time base There are two versions of standard crystals available with 6pF and 12 5pF load capacitance The tradeoff is that the 6pF uses less power giving longer life while VCC is...

Page 12: ...otection should be added to prevent the device pin from going below 0 3V Some power supplies can give a small undershoot on power up which should be prevented Application Note 93 Design Guidelines for...

Page 13: ...is required if this feature is not used When accessing external program memory the first 16kB would be inaccessible To select a smaller effective ROM size software must alter bits RMS2 RMS0 Altering...

Page 14: ...hile enabled MOVX addresses greater than 03FFh automatically go to external memory through Ports 0 and 2 When disabled the 1kB memory area is transparent to the system memory map Any MOVX directed to...

Page 15: ...a two machine cycle MOVX A Stretch of 7 will result in a MOVX of nine machine cycles Software can dynamically change this value depending on the particular memory or peripheral On reset the Stretch v...

Page 16: ...ated instructions use the currently selected DPTR for any activity Therefore it takes only one instruction to switch from a source to a destination address Using the Dual Data Pointer saves code from...

Page 17: ...re is little reason to use Idle mode in new designs Table 4 Machine Cycle Rate CRYSTAL SPEED MHz FULL OPERATION 4 CLOCKS MHz PMM1 64 CLOCKS kHz PMM2 1024 CLOCKS kHz 11 0592 2 765 172 8 10 8 16 4 00 25...

Page 18: ...ed 0 1 4 clocks default 1 0 64 clocks 1 1 1024 clocks The selection of instruction cycle rate will take effect after a delay of one instruction cycle Note that the clock divider choice applies to all...

Page 19: ...M Alternately software can prevent an undesired exit from PMM by entering a low priority interrupt service level before entering PMM This will prevent other low priority interrupts from causing a Swit...

Page 20: ...a reduced clock divider and enables the ring a Switchback will only restore the divider speed The ring will remain as the time base until altered by software If there is serial activity Switchback us...

Page 21: ...W WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y C...

Page 22: ...WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100...

Page 23: ...ll power PMM or Idle modes The second feature allows an additional power saving option while also making Stop easier to use This is the ability to start instantly when exiting Stop mode It is the inte...

Page 24: ...very instruction cycle NOTE DIAGRAM ASSUMES THAT THE OPERATION FOLLOWING STOP REQUIRES LESS THAN 18ms TO COMPLETE WWW 1 WWW 100Y COM WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y CO WWW...

Page 25: ...e the VRST level Once above this level the monitor enables the crystal oscillator and counts 65 536 clocks It then exits the reset state This power on reset POR interval allows time for the oscillator...

Page 26: ...33MHz 0 0 217 clocks 3 9718ms 217 512 clocks 3 9874ms 0 1 220 clocks 31 77ms 220 512 clocks 31 79ms 1 0 223 clocks 254 20ms 223 512 clocks 254 21ms 1 1 226 clocks 2033 60ms 226 512 clocks 2033 62ms A...

Page 27: ...or RI0 from Serial Port 0 23h 6 8051 TF2 Timer 2 2Bh 7 8051 SCON1 TI1 or RI1 from Serial Port 1 3Bh 8 DALLAS INT2 External Interrupt 2 43h 9 DALLAS INT3 External Interrupt 3 4Bh 10 DALLAS INT4 Externa...

Page 28: ...veforms and timing are provided in the Electrical Specifications section Program the DS87C530 as follows 1 Apply the address value 2 Apply the data value 3 Select the programming option from Table 9 u...

Page 29: ...egister have the following function Bits 7 to 4 Reserved program to 1 Bit 3 Watchdog POR default Set 1 Watchdog reset function is disabled on power up Set 0 Watchdog reset function is enabled automati...

Page 30: ...100Y COM TW WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW...

Page 31: ...COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 1...

Page 32: ...TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW...

Page 33: ...45 V 3 Output High Voltage Ports 1 2 3 ALE PSEN at IOH 50mA VOH1 2 4 V 3 8 Output High Voltage Ports 1 2 3 at IOH 1 5mA VOH2 2 4 V 3 9 Output High Voltage Port 0 in Bus Mode IOH 8mA VOH3 2 4 V 3 10 I...

Page 34: ...t Note 12 Ports 1 2 and 3 source transition current when being pulled down externally It reaches its maximum at approximately 2V Note 13 0 45 VIN VCC RST VCC This condition mimics operation of pins in...

Page 35: ...ll change in relation to duty cycle variation Note 2 Address is driven strongly until ALE falls and is then held in a weak latch until overdriven externally WWW 1 WWW 100Y COM WWW 100Y COM TW WWW 100Y...

Page 36: ...n The following table shows the value of tMCS for each Stretch selection WWW 1 WWW 100Y COM WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM...

Page 37: ...WW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y CO WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM...

Page 38: ...a Float after Enable tEHQZ 0 48tCLCL PROG High to PROG Low tGHGL 10 ms Note 1 All voltages are referenced to ground WWW 1 WWW 100Y COM WWW 100Y COM TW WWW 100Y COM TW WWW WWW 100Y COM TW WWW 100Y CO W...

Page 39: ...TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW...

Page 40: ...WW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y...

Page 41: ...0Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM T...

Page 42: ...100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM...

Page 43: ...WW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y...

Page 44: ...W 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y C...

Page 45: ...TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 1...

Page 46: ...TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW 100Y COM TW WWW...

Page 47: ...using external crystal 7 Changed RST pulldown resistance from 170kW to 200kW maximum 8 Corrected Data memory write with stretch diagrams to show falling edge of ALE coincident with rising edge of C3 c...

Reviews: