Linear DC2048A Demo Manual Download Page 7

7

dc2048af

DEMO MANUAL DC2048A

Figure 5. MIDE V25W Open Circuit AC Voltage 

with 1g

rms

, 60Hz Acceleration Applied 

connection to a Dust mote (Dc9003a-B)

Figure 7. Mide V25W Charging the 18µF Input 

Capacitance from 4.48V to 5.92V in 208ms

Figure 6 is a plot of the output power and load voltage 

of the V25W piezoelectric transducer into a 42.2kΩ load 

for  various  rms  acceleration  levels.  The  output  power 

compares well with the input power that is charging C

IN

 

during the sleep cycle between VIN_UVLO_FALLING and 

VIN_UVLO_RISING thresholds at an acceleration force of 

1grms, shown in Figure 7.
In Figure 7, the input capacitor is being recharged from 

the V25W piezoelectric transducer. The input capacitor is 

charging from 4.48V to 5.92V in 208 milli-seconds. The 

power delivered from the V25W is 648µW. 
Assuming  that  the  circuit  is  configured  as  shown  in  

Figure 8, it will take a significant amount of time for the 

piezo transducer to charge the 0.09F supercapacitor on 

the output of the LTC3330. As used above, the 22µF input 

capacitor  is  only 18µF  at  an  applied  voltage  of 5V,  so 

every VIN_UVLO_RISING and FALLING event produces 

26 micro-coulombs [(5.92V – 4.48V

) • 18µ

F)] that may be 

transferred from the input capacitor to the output capacitor, 

minus the losses of the buck regulator in the LTC3330. 

The buck regulator efficiency is approximately 90% at V

IN

 

equal to 5V and V

OUT

 between 2.5V and 3.6V. Thus, for 

every UVLO event, 23.3 microcoulombs are added to the 

output supercapacitor. Given a 0.09F output supercapacitor 

charging to 3.6V, 324 millicoulombs are required to fully 

charge the supercapacitor. Assuming no additional load on 

the output, it takes 13,906 (.324/23.3e-6) UVLO events to 

charge the output supercapacitor to 3.6V. From Figure 7, it 

can be observed that each VIN_UVLO event takes 208ms 

so the total time to charge the output capacitor from 0V 

to 3.6V will be greater than 2900s. Figure 9 shows the no 

load charging of the output supercapacitor, which takes 

approximately 3300s. The above calculation neglects the 

lower efficiency at low output voltages and the time it 

takes to transfer the energy from the input capacitor to 

the output supercapacitor so predicting the actual value 

within –12% is to be expected.   

Figure 6. Mide V25W Output Power Into a 42.2kΩ Load 

with 1g

rms

, 60Hz Acceleration Applied to the Mide V25W 

Piezoelectric Transducer, [√

2

 • sin(2π • 60Hz • t)]

1ms/DIV

DC2048A F05

VAC

OC 10

FORGE (g)

POWER (µW)

LOAD VOL

TAGE (V

RMS

)

DC2048A F02

700

600

400

500

200

100

300

0

6

4

5

2

1

3

0

0.25 0.375

0.75 0.875

1

0.625

0.5

POWER (µW)

LOAD VOLTAGE (V

RMS

)

42.2k LOAD 60Hz

455µs/DIV

DC2048A F07

BH_ON

5V/DIV

V

OUT

1V/DIV

V

IN

2V/DIV

Summary of Contents for DC2048A

Page 1: ...edenergy is available reducing the quiescent current drawn on the L LT LTC LTM Linear Technology and the Linear logo are registered trademarks and Dust is a trademark of Linear Technology Corporation All other trademarks are the property of their respective owners Board Photo battery to essentially zero The buck boost takes over when harvested energy goes away A low noise LDO post regulator and a ...

Page 2: ...lects which converter to usebasedontheavailabilityofabatteryand orharvestable energy If harvested energy is available the buck regula tor is active and the buck boost is off With an optional LDO and supercapacitor balancer and an array of different configurations the LTC3330 suits many applications The synchronous buck converter is an ultralow quiescent currentpowersupplytailoredtoenergyharvesting...

Page 3: ...ording to Table 1 of the data sheet The buck boost uses the same hysteretic algorithm as the buck to control the output VOUT with the same sleep comparator Thebuck boosthasthreemodesofoperation buck buck boost and boost An internal mode compara tor determines the mode of operation based on BAT and VOUT In each mode the inductor current ramps up to IPEAK which is programmable via IPK 2 0 See Table ...

Page 4: ...rom VIN Set the current limit of PS1 to 25mA as described above 7 Connect PS1 to AC1 and slowly increase PS1 volt age to 2 0V while monitoring the input current If the current remains less than 5mA increase PS1 to 19V Verify voltage on VOUT is within the VOUT 1 8V range in Table 1 Decrease PS1 to 0V swap the AC1 connection to AC2 and repeat the test Decrease PS1 to 0V and disconnect PS1 from AC2 8...

Page 5: ...erify that BAL is approximately of VOUT 15 Set JP8 to 0 JP9 to 0 and JP10 to 0 and verify that LDO_OUT is now 1 2V Quickly remove PS1 lead from VIN and verify that LDO_OUT remains at 1 2V for approximately 5 seconds 16 Turn off PS1 PS2 LOAD1 and LOAD2 Figure 3 Proper Measurement Equipment Setup ...

Page 6: ...to 0 JP11 to OFF Piezoelectric Transducer Evaluation Mount a series connected MIDE V25W to a vibration source and connect the electrical connections to the AC1 and AC2 turrets Activate the vibration source to an acceleration of 1G and a frequency of 60Hz Figure 5 shows an open circuit voltage of 10 6V for the Mide V25W piezoelectric device that was tuned to 60Hz In order to set the VIN_UVLO_RISING...

Page 7: ...pacitortotheoutputcapacitor minus the losses of the buck regulator in the LTC3330 The buck regulator efficiency is approximately 90 at VIN equal to 5V and VOUT between 2 5V and 3 6V Thus for every UVLO event 23 3 microcoulombs are added to the outputsupercapacitor Givena0 09Foutputsupercapacitor charging to 3 6V 324 millicoulombs are required to fully chargethesupercapacitor Assumingnoadditionallo...

Page 8: ... of LTC3330 Charging Supercapacitor at No Load without a Battery VOUT 3 6V PIEZO MIDE V25W 1µF 6V 4 7µF 6 3V GND LTC3330 DC2048A F08 AC1 VIN CAP VIN2 BAT IPK2 IPK1 IPK0 UV3 UV2 UV1 UV0 OUT2 AC2 SW SWA 22µH 22µH SWB VOUT SCAP BAL OUT1 OUT0 EH_ON PGVOUT VIN3 22µF 25V 22µF 6V 1µF 6V 180mF 2 5V 180mF 2 5V HZ202F 100µF 10V 500s DIV DC2048A F09 EH_ON 5V DIV VOUT 2V DIV VIN 2V DIV ...

Page 9: ...NG to VIN_UVLO_FALLING threshold When the pulsed load is applied the output capacitor is depleted slightly and the inputcapacitormustrechargetheoutputcap Becausethe inputcapacitanceismuchlessthantheoutputcapacitance theinputcapacitorwillgothroughmanyUVLOtransitionsto chargetheoutputcapacitorbackuptothesleepthreshold Once the output is charged to the output sleep threshold theEH_ONsignalwillagainbe...

Page 10: ...2 5V to the energy harvester set point of 3 6V VOUT is above the 2 5V PGVOUT threshold hence PGVOUT will go high every time EH_ON goes low This cycle will be repeated until VOUT reaches the PGVOUT threshold for the VOUT setting of 3 6V When a pulse load is applied that is greater than the energy supplied by the input capacitor VIN will drop below the VIN_UVLO_FALLING threshold EH_ON will go low an...

Page 11: ...making a data transmission Figure14showsthedischargingofVOUTwhenthevibration sourceisremovedandVINdropsbelowtheUVLO_FALLING threshold causing EH_ON to go low The supercapacitor on VOUT will discharge down to the new target voltage of 2 5V at which point the buck boost regulator will turn on supplying power to the Dust mote The discharging of the supercapacitor on VOUT provides an energy source for...

Page 12: ... 100µF 10V EHORBAT PGOOD VSUPPLY VOUT 3 6V FOR EH_ON 1 VOUT 2 5V FOR EH_ON 0 TX GND LINEAR TECHNOLOGY DC9003A A B DUST MOTE FOR WIRELESS MESH NETWORKS NC7SZ58P8X x2 100ms DIV DC2048A F16 EH_ON 500V DIV POVOUT 500V DIV VOUT 1V DIV VIN 200V DIV Connection to a Dust Mote DC9003A B Figure 15 Dust Mote Setup without a Supercapacitor and with EH_ON Connected to OUT2 Figure 16 Output Voltage Charging wit...

Page 13: ...1 L1 INDUCTOR 22µH 0 35A 1 9Ω 4 1mm 4 1mm COILCRAFT LPS4018 223MLC 12 1 L2 INDUCTOR 22µH 0 75A 0 19Ω 4 8mm 4 8mm COILCRAFT LPS5030 223MLC 13 3 R2 R4 R6 RES CHIP 0Ω 0603 VISHAY CRCW06030000FKED 14 0 R3 R5 R7 RES CHIP 0Ω 0603 VISHAY CRCW06030000FKED 15 2 R8 R9 RES CHIP 7 5k 1 16W 1 0402 VISHAY CRCW04027K50FKED 16 1 U1 ENERGY HARVESTING DC DC WITH BATTERY B LINEAR TECH LTC3330EUH Additional Demo Boar...

Page 14: ...TACT LINEAR TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND SCHEMATIC SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS SCALE NONE www linear com 3 DEMO CIRCUIT 2048A 1 2 NANOPOWER BUCK BOOST DC DC N A LTC3330EUH NC JD 5 17 13 WITH ENERGY HARVESTING BATTERY LIFE EXTENDER SIZE DATE IC NO REV SHEET OF TITLE APPROVALS PCB DES APP ENG TECHNOLOGY Fax ...

Page 15: ...1900 1630 McCarthy Blvd LTC Confidential For Customer Use Only CUSTOMER NOTICE LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A CIRCUIT THAT MEETS CUSTOMER SUPPLIED SPECIFICATIONS HOWEVER IT REMAINS THE CUSTOMER S RESPONSIBILITY TO VERIFY PROPER AND RELIABLE OPERATION IN THE ACTUAL APPLICATION COMPONENT SUBSTITUTION AND PRINTED CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT PERFORMANCE ...

Page 16: ...UDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE EXCEPT TO THE EXTENT OF THIS INDEMNITY NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES The user assumes all responsibility and liability for proper and safe handling of the goods Further the user releases LTC from all claims arising from the handling or use of the goo...

Reviews: