background image

2

dc1668acf

DEMO MANUAL DC1668A-C

PARAMETER

CONDITION

VALUE

Input Voltage Range

4.5V to 20V

Output Voltage V

OUT

Remove V

OUT

 SEL Jumper for V

OUT

 =  0.6V

DC

0.6V

DC

, 1V

DC

, 1.2V

DC

, 1.5V

DC

, 1.8V

DC

2.5V

DC

, 3.3V

DC

Maximum Continuous Output Current I

OUT(MAX)

Current Derating May Be Necessary for Certain V

IN

V

OUT

, Frequency and Thermal Conditions.

50A

DC

Default Operating Frequency

500kHz

External Clock Synchronous Frequency Range

250kHz to 770kHz

Output Voltage Ripple (Typical)

V

IN

 = 12V, V

OUT

 = 1.8V 

500kHz (20MHz BW)

< 10mV

P-P

 at I

OUT

 = 50A, See Figure 5

Efficiency

V

IN

 = 12V, V

OUT

 = 1.8V 

500kHz 

87.7% at I

OUT

 = 50A, See Figure 2

Load Transient

V

IN

 = 12V, V

OUT

 = 1.8V

See Figure 4

QUICK START PROCEDURE

PERFORMANCE SUMMARY

Demonstration circuit 1668A-C is easy to set up to evaluate 

the performance of paralleled LTM4627 modules. Please 

refer to Figure 1 for proper measurement equipment setup 

and follow the procedure below: 
1. With power off, connect the input power supply, load, 

meters and V

OUT

 BNC cable as shown in Figure 1. 

Preset the load to 0A and V

IN

 supply to be 0V. Place 

jumpers in the following positions for a typical 1.8V

OUT 

application:

JP2

JP7

JP6

V

OUT

 Select

RUN

TRACK/SS

1.8V

OFF

SOFT-START

2. Turn on the power at the input. Increase V

IN

 to 12V 

(Do not hot-plug the input supply or apply more than 

the rated maximum voltage of 20V to the board or the 

modules may be damaged). 

3. Set the RUN pin jumper (JP7) to the ON position. The 

output voltage should be regulated. The output voltage 

meter should read 1.8V ±2% (1.76V to 1.84V).

4. Vary the input voltage from 5V to 20V and adjust the 

load current from 0A to 50A. V

OUT

 should remain 

regulated at 1.8V ±2%. Observe the load regulation, 

output voltage ripple, efficiency and other parameters. 

Output voltage ripple should be measured at J6 with 

a BNC cable and oscilloscope. The probe channel for 

V

OUT

 should be set at 50Ω termination resistance to 

match the BNC cable.

5. For optional load transient testing apply an adjustable 

positive pulse signal between IOSTEP CLK and GND 

pins. The pulse amplitude sets the load step current 

amplitude. The pulse width should be short (< 1ms) 

and pulse duty cycle should be low (< 15%) to limit the 

thermal stress on the load transient circuit. The load 

step current can be monitored with a BNC connected 

to J5 (5mV/A).

Summary of Contents for DC1668A-C

Page 1: ...rnalclockbe tween250kHzto770kHz Thedefaultswitchingfrequency for the DC1668A C is set to 500kHz through the onboard LTC6902 clock generator The external clock interleaves the paralleled phases to minimize input and output ripple DC1668A C demonstrates that paralleling LTM4627 mod ulesiseasyandreliable Thesefeaturesandtheavailability oftheLTM4627inacompactthermallyenhanced15mm 15mm 4 32mm LGA packa...

Page 2: ... Place jumpers in the following positions for a typical 1 8VOUT application JP2 JP7 JP6 VOUT Select RUN TRACK SS 1 8V OFF SOFT START 2 Turn on the power at the input Increase VIN to 12V Do not hot plug the input supply or apply more than the rated maximum voltage of 20V to the board or the modules may be damaged 3 Set the RUN pin jumper JP7 to the ON position The output voltage should be regulated...

Page 3: ...3 dc1668acf DEMO MANUAL DC1668A C QUICK START PROCEDURE Figure 1 Test Setup of DC1668A C V A V A VIN BNC CABLE TO OSCILLOSCOPE TERMINATE INTO 50Ω LOAD 1668ac F01 ...

Page 4: ...IN 1 8VOUT 50A 500kHz No Forced Airflow Convection TA 29 C Figure 5 Measured Output Voltage Ripple 20MHz BW LOAD CURRENT A 0 EFFICIENCY 50 40 30 1668ac F02 95 90 20 10 85 80 75 70 3 3VOUT 2 5VOUT 1 8VOUT 1 5VOUT 1 2VOUT 1VOUT 1668ac F04 20A DIV 100mV DIV VOUT IOUT STEP VOUT 1 8V IOUT DC 25A IOUT STEP 25A fSW 500kHz 1668ac F05 20mV DIV VOUT VOUT 1 8V IOUT 50A fSW 500kHz ...

Page 5: ... 1 1 10W Vishay CRCW06034K75FKED 18 1 R4 Res 0603 3 32k 1 1 10W Vishay CRCW0603K32FKEA 19 1 R12 Res 0603 22 6k 1 1 10W Vishay CRCW060322K6FKEA 20 1 R14 Res 0603 15k 1 1 10W Vishay CRCW060315K0FKEA 21 1 R27 Res 0603 0Ω Jumper Vishay CRCW06030000Z0EA 22 1 R29 Res 0603 100k 1 1 10W Vishay CRCW0603100KFKEA 23 4 U1 U2 U3 U4 IC µModule Regulator Linear Technology LTM4627EV Additional Demo Board Circuit ...

Page 6: ... 25 1 C70 Cap 0603 0 22µF 20 10V X5R Option Taiyo Yuden LMK107BJ224MA T Option 26 0 R9 R13 R15 R23 R24 Res 0603 51k 5 1 10W Option AAC CR16 513JM Option 27 0 R21 R22 R36 Res 0603 Option Option 28 0 COUT22 Cap 470µF 20 4V POSCAP Option Sanyo POSCAP 4TPF470ML Option 29 1 COUT25 Cap 470µF 20 4V POSCAP Option Sanyo POSCAP 4TPF470ML 30 1 R26 Res 0603 Option Option Hardware 1 6 JP1 JP2 JP3 JP4 JP5 JP8 H...

Page 7: ...P14 C61 C61 COUT1 100uF 6 3V COUT1 100uF 6 3V TP2 TP2 R8 0 R8 0 R17 0 015 1 R17 0 015 1 C18 OPT C18 OPT COUT24 OPT COUT24 OPT TP4 TP4 R21 OPT R21 OPT JP5 JP5 TP1 TP1 JP1 JP1 R14 1 R14 1 Q14 SUD50N03 10CP Q14 SUD50N03 10CP 1 2 3 J5 J5 1 2 3 4 5 R2 1 R2 1 R19 10 R19 10 TP6 TP6 JP8 JP8 CIN14 OPT 25V CIN14 OPT 25V TP5 TP5 C69 OPT C69 OPT 1 2 R13 OPT R13 OPT COUT2 OPT COUT2 OPT J1 J1 C55 OPT C55 OPT R1...

Page 8: ...D G4 PGND G5 PGND G6 PGND G7 PGND G8 PGND G9 PGND H1 PGND H2 PGND H3 PGND H4 PGND H5 PGND H6 PGND H7 PGND H8 PGND H9 SGND H11 SGND H12 PGND C9 PGND C7 PGND B9 PGND B7 PGND D8 PGND E9 PGOOD F11 PGOOD G12 MTP8 D12 MTP7 D11 MTP6 D10 MTP5 C12 MTP4 C11 MTP3 C10 MTP2 B11 EXTVCC E12 MTP1 A12 C52 C52 C64 1nF C64 1nF C76 OPT C76 OPT COUT5 100uF COUT5 100uF COUT10 OPT COUT10 OPT COUT6 OPT COUT6 OPT R23 OPT ...

Page 9: ...LTM4627EV U4 LTM4627EV SGND G11 FSET B12 VOUT_LCL L12 COMP A11 VFB F12 RUN A10 TRACK SS A9 PLLIN A8 INTVCC A7 VOSNS J12 VOSNS M12 DIFF_VOUT K12 INTVCC D9 VIN A1 VIN A2 VIN A3 VIN A4 VIN A5 VIN A6 VIN B1 VIN B2 VIN B3 VIN B4 VIN B5 VIN B6 VIN C1 VIN C2 VIN C3 VIN C4 VIN C5 VIN C6 VOUT J1 VOUT J2 VOUT J3 VOUT J4 VOUT J5 VOUT J6 VOUT J7 VOUT J8 VOUT J9 VOUT J10 VOUT K1 VOUT K2 VOUT K3 VOUT K4 VOUT K5...

Page 10: ...NCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE EXCEPT TO THE EXTENT OF THIS INDEMNITY NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES The user assumes all responsibility and liability for proper and safe handling of the goods Further the user releases LTC from all claims arising from the handling or use of the ...

Reviews: