background image

2

dc1780abfa

DEMO MANUAL DC1780A-B

 QUICK START PROCEDURE

Demonstration circuit DC1780A-B is easy to set up to 
evaluate the performance of PolyPhase operation of the 
LTM4620EV. Due to the high input/output current, select 
a proper input supply/load/cable which can sustain the 
full load operation. Please refer to Figure 2 for proper 
measurement setup and follow the procedure below: 

1. Place jumpers in the following positions for a typical 

1.0V

OUT

 application: 

JP1

JP2

JP4-JP8

CLK

RUN

V

OUT

 SELECT

INT_CLK

OFF

ON JP4/1.0V

2. With power off, connect the input power supply, load 

and meters as shown in Figure 2. Preset the load to 0A 
and V

IN

 supply to 12V. 

3. Turn on the power supply at the input. Place JP2 to 

ON position. The output voltage between V

OUT

+

 and 

V

OUT

– 

should be 1.0V ± 1.5% (0.985V to 1.015V). 

4.  Once the proper output voltage is established, adjust the 

load within the operating range and observe the output 
voltage regulation, output voltage ripple, efficiency 
and other parameters. Output voltage ripple should 
be measured at J7 with BNC cables. 50Ω termination 
should be set on the oscilloscope or BNC cables. 

5. (Optional) For optional load transient test, apply an 

adjustable pulse signal between IOSTEP CLK and GND 
test point. The pulse amplitude (3V to 3.5V) sets the load 
step current amplitude. The output transient current can 
be monitored at the BNC connector J8 (5mV/A). The 
pulse signal should be very small duty cycle (< 10%) 
to limit the thermal stress on the transient load circuit.

6.  (Optional) LTM4620 can be synchronized to an external 

clock signal. Place the JP1 jumper on EXT_CLK and 
apply a clock signal (0V to 5V, square wave) on the 
EXT_CLK test point.

 PERFORMANCE SUMMARY

Specifications are at T

A

 = 25°C

PARAMETER

CONDITIONS/NOTES

VALUE

Input Voltage Range

4.5V to 16V

Output Voltage V

OUT 

V

IN

 = 4.5V to 16V, I

OUT

 = 0A to 75A, JP4: 1.0V

1.0V ± 1.5% (0.985V to 1.015V)

Maximum Continuous Output Current 

Derating is necessary for certain V

IN

, V

OUT

 and thermal 

conditions, see data sheet for detail.

75A 

Default Operating Frequency

500kHz

Resistor Programmable Frequency Range

400kHz to 780kHz

External Clock Sync. Frequency Range

400kHz to 780kHz

Efficiency V

IN

 = 12V, V

OUT

 = 1.0V, I

OUT

 = 75A, f

SW

 = 500kHz

80.6% See Figure 4

Load Transient 

V

IN

 = 12V, V

OUT

 = 1.0V, I

SETP

 = 37.5A to 75A 

<163mV, See Figure 5

Output Voltage Ripple

V

IN

 = 12V, V

OUT

 = 1.0V, I

OUT

 = 75A, f

SW

 = 500kHz

<10mV, See Figure 6

Table 1. LTM4620 Demo Cards for up to 100A Point-of-Load Regulation

MAXIMUM 

OUTPUT CURRENT

NUMBER OF OUTPUT

VOLTAGES

NUMBER OF LTM4620 μMODULE 

REGULATORS ON THE BOARD

DEMO CARD NUMBER

13A, 13A

2

1

DC1498A

50A

1

2

DC1780A-A

75A

1

3

DC1780A-B

100A

1

4

DC1780A-C

Summary of Contents for DC1498A

Page 1: ...to an external clock signal The board allows the user to program how its output voltage ramps up and down through the TRACK_CONTROL pin The output voltage is tightly regulated between VOUT and VOUT through remote output voltage sensing which improves output voltage regulation at heavy loads These featuresandtheavailabilityoftheLTM4620EVinacompact 15mm 15mm 4 41mm LGA package make it ideal for use ...

Page 2: ...OSTEP CLK and GND testpoint Thepulseamplitude 3Vto3 5V setstheload stepcurrentamplitude Theoutputtransientcurrentcan be monitored at the BNC connector J8 5mV A The pulse signal should be very small duty cycle 10 to limit the thermal stress on the transient load circuit 6 Optional LTM4620canbesynchronizedtoanexternal clock signal Place the JP1 jumper on EXT_CLK and apply a clock signal 0V to 5V squ...

Page 3: ...n track another supply The output voltage tracks the voltage on TRACK_CONTROL when a valid signal is applied on the test point 8 Optional DC1780A B can be configured to a dual outputs configuration with VOUT at 62A load current and VOUT2 at 13A load current Stuff 0Ω resistor on R61 and 0 1μF on C14 Remove R22 R23 R24 R26 R27 R28 R32 R33 R35 Output voltage VOUT2 is set by R37 based on the equation ...

Page 4: ...th Standard Demo Circuit Default Setup LOAD CURRENT A 0 EFFICIENCY 100 90 80 70 60 40 10 DC1780A B F03 50 60 70 30 20 VIN 5V VOUT 2 5V VIN 5V VOUT 1 8V VIN 5V VOUT 1 5V VIN 5V VOUT 1 2V VIN 5V VOUT 1V LOAD CURRENT A 0 EFFICIENCY 100 90 80 70 60 40 10 DC1780A B F04 50 60 70 30 20 VIN 12V VOUT 2 5V VIN 12V VOUT 1 8V VIN 12V VOUT 1 5V VIN 12V VOUT 1 2V VIN 12V VOUT 1V DC1780A B F05 1V OUTPUT 20MHz BW...

Page 5: ...B Figure 7 Thermal Capture at 12VIN 1 0VOUT at 75A Ambient Temperature 23 3 C No Airflow and No Heat Sink Figure 8 Thermal Capture at 12VIN 1 0VOUT at 75A Ambient Temperature 23 3 C 200LFM Airflow and No Heat Sink QUICK START PROCEDURE ...

Page 6: ...NEA 14 1 C22 Cap X5R 2 2μF 10V 20 0603 Taiyo Yuden LMK107BJ225MA 15 1 C25 Cap X7R 0 1μF 25V 10 0603 AVX 06033C104KAT2A 16 1 CIN1 Cap Alum 150μF 25V 25 SUNCON 8 SUNCON 25CE150AX 17 2 CIN2 CIN11 Cap X5R 1μF 25V 10 1210 Taiyo Yuden TMK325BJ105KM 18 0 COUT2 COUT3 COUT8 COUT9 COUT13 COUT14 COUT16 CIN16 COUT17 CIN17 CIN18 CIN19 COUT21 COUT22 COUT27 COUT28 COUT30 COUT32 COUT33 COUT34 COUT35 COUT36 OPT Ca...

Page 7: ...11 E1 E2 E3 E4 E6 E7 E8 E9 E12 E13 E22 Turret Testpoint Mill Max 2308 2 00 80 00 00 07 0 38 0 E5 E10 E11 E14 E15 E16 E17 E18 Opt Testpoint 39 2 E19 E20 Turret Testpoint Mill Max 2501 2 00 80 00 00 07 0 40 2 JP1 JP2 Headers 3 Pins 2mm Ctrs Samtec TMM 103 02 L S 41 5 JP4 JP5 JP6 JP7 JP8 Jumper 2 Pins 2mm Ctrs Samtec TMM 102 02 L S 42 6 J1 J2 J3 J4 J5 J6 Stud Test Pin PEM KFH 032 10 43 12 NUT BRASS N...

Page 8: ...IC SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS SCALE NONE www linear com 1 02 5 8 7 0RQGD HFHPEHU 1 4 1 32 3 6 1 70 9 5 JEFF Z 67 3 2 1 32 5 02 8 5 8 725 ͰW WZK d ͰϭϳϴϬ Ͱ ͰϭϳϴϬ Ͳ ͰϭϳϴϬ Ͳ ͺϬϬͺZ sϭ E COUT7 100uF 10V 1210 COUT7 100uF 10V 1210 E9 TRACK_CONTROL E9 TRACK_CONTROL R16 40 2K 1 R16 40 2K 1 E8 EXTVCC E8 EXTVCC JP8 2 5V JP8 2 5V CIN5 22uF 25V 1210 CIN5 22uF 25V 1210 JP2 ON OFF RUN JP2 ON OF...

Page 9: ...ING FOR ASSISTANCE THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND SCHEMATIC SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS SCALE NONE www linear com 1 02 5 8 7 0RQGD HFHPEHU 2 4 1 32 3 6 1 70 9 5 JEFF Z 67 3 2 1 32 5 02 8 5 8 725 ͰW WZK d ͰϭϳϴϬ Ͱ ͰϭϳϴϬ Ͳ ͰϭϳϴϬ Ͳ ͺϬϬͺZ sϭ E R29 10 R29 10 C11 1uF 10V C11 1uF 10V R23 0 Ohm 2010 R23 0 Ohm 2010 R38 OPT R38 OPT R19 0 Ohm R19 0 Ohm C8 OPT C8 OPT U2 ...

Page 10: ...CTUAL APPLICATION COMPONENT SUBSTITUTION AND PRINTED CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT PERFORMANCE OR RELIABILITY CONTACT LINEAR TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND SCHEMATIC SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS SCALE NONE www linear com 1 02 5 8 7 0RQGD HFHPEHU 3 4 1 32 3 6 1 70 9 5 JEFF Z 67 3 2 1 32...

Page 11: ...LICATION COMPONENT SUBSTITUTION AND PRINTED CIRCUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT PERFORMANCE OR RELIABILITY CONTACT LINEAR TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND SCHEMATIC SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS SCALE NONE www linear com 1 02 5 8 7 0RQGD HFHPEHU 4 4 1 32 3 6 1 70 9 5 JEFF Z 67 3 2 1 32 5 02 8 5...

Page 12: ... INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE EXCEPT TO THE EXTENT OF THIS INDEMNITY NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES The user assumes all responsibility and liability for proper and safe handling of the goods Further the user releases LTC from all claims arising from the handling or use of th...

Reviews: