Creating and Running Custom Algorithms
121
Individual element numbers are isolated by commas. A contiguous range of
elements is specified by: <starting element>colon<ending element>.
Writing values to the FIFO
The FIFO, as the name implies is a First-In-First-Out buffer. It can buffer up
to 65,024 values. This capability allows your algorithm to send a continuous
stream of data values related in time by their position in the buffer. This can
be thought of as an electronic strip-chart recorder. Each value is sent to the
FIFO by executing the Algorithm Language intrinsic statement
writefifo(<expression>). The following in an example algorithm statement:
writefifo(O124); /* send output channel 24’s value to the FIFO */
Since you can determine the actual algorithm execution rate (see
“Programming the Trigger Timer” on page 84), the time relationship of
readings in the FIFO is very deterministic.
Reading values from the FIFO
For a discussion on reading values from the FIFO, see “Reading History
Mode Values From the FIFO” on page 88.
Writing values to the FIFO and CVT
The writeboth(<expression>,<cvt_element>) statement sends the value of
<expression> both to the FIFO and to a <cvt_element>. Reading these
values is done the same way as mentioned for writefifo() and writecvt().
Setting a VXIbus
Interrupt
The algorithm language provides the function interrupt() to force a VXIbus
interrupt. When interrupt() is executed in your algorithm, a VXIbus
interrupt line (selected by the the SCPI command DIAG:INTR[:LINe]) is
asserted. The following example algorithm code tests an input channel value
and sets an interrupt if it is higher or lower than set limits.
static float upper_limit = 1.2, lower_limit = 0.2;
if( I124 > upper_limit || I124 < lower_limit ) interrupt();
Determining Your
Algorithm’s Identity
(ALG_NUM)
When you define your algorithm with the ALG:DEF 'ALGn',... command,
the E1415's driver make available to your algorithm the constant
ALG_NUM. ALG_NUM has the value n from "ALGn". For instance, if you
defined an algorithm with <alg_name> equal to "ALG3", then ALG_NUM
within that algorithm would have the value 3.
What can you do with this value? To give you an idea, the standard PID
algorithm PIDB uses ALG_NUM to determine which CVT elements it should
use to store values. Here’s a short example of the code used:
writecvt ( inp_channel, (ALG_NUM * 10) + 0 );
writecvt ( Error, (ALG_NUM * 10) + 1 );
writecvt ( outp_channel, (ALG_NUM * 10) + 2 );
writecvt ( Status, (ALG_NUM * 10) + 3 );
This code writes PID values into CVT elements 10 through 13 for ALG1,
CVT elements 20 through 23 for ALG2, CVT elements 30 through 33 for
Summary of Contents for VXI 75000 C Series
Page 2: ......
Page 16: ...16 ...
Page 18: ......
Page 30: ...30 Getting Started Chapter 1 Notes ...
Page 32: ...32 Field Wiring Chapter 2 Figure 2 1 Channel Numbers at SCP Positions ...
Page 44: ...44 Field Wiring Chapter 2 Figure 2 11 HP E1415 Terminal Module ...
Page 54: ...54 Field Wiring Chapter 2 Notes ...
Page 61: ...Programming the HP E1415 for PID Control 61 Chapter 3 Programming Overview Diagram ...
Page 136: ...136 Creating and Running Custom Algorithms Chapter 4 Notes ...
Page 152: ...152 Algorithm Language Reference Chapter 5 Notes ...
Page 304: ...304 HP E1415 Command Reference Chapter 6 Command Quick Reference Notes ...
Page 308: ...308 Specifications Appendix A Thermocouple Type E 200 800C SCPs HP E1501 02 03 ...
Page 309: ...Specifications 309 Appendix A Thermocouple Type E 200 800C SCPs HP E1508 09 ...
Page 310: ...310 Specifications Appendix A Thermocouple Type E 0 800C SCPs HP E1501 02 03 ...
Page 311: ...Specifications 311 Appendix A Thermocouple Type E 0 800C SCPs HP E1509 09 ...
Page 312: ...312 Specifications Appendix A Thermocouple Type E Extended SCPs HP E1501 02 03 ...
Page 313: ...Specifications 313 Appendix A Thermocouple Type E Extended SCPs HP E1508 09 ...
Page 314: ...314 Specifications Appendix A Thermocouple Type J SCPs HP E1501 02 03 ...
Page 315: ...Specifications 315 Appendix A Thermocouple Type J SCPs HP E1508 09 ...
Page 316: ...316 Specifications Appendix A Thermocouple Type K SCPs HP E1501 02 03 ...
Page 317: ...Specifications 317 Appendix A Thermocouple Type R SCPs HP E1501 02 03 ...
Page 318: ...318 Specifications Appendix A Thermocouple Type R SCPs HP E1508 09 ...
Page 319: ...Specifications 319 Appendix A Thermocouple Type S SCPs HP E1501 02 03 ...
Page 320: ...320 Specifications Appendix A Thermocouple Type S SCPs HP E1508 09 ...
Page 321: ...Specifications 321 Appendix A Thermocouple Type T SCPs HP E1501 02 03 ...
Page 322: ...322 Specifications Appendix A Thermocouple Type T SCPs HP E1508 09 ...
Page 323: ...Specifications 323 Appendix A 5K Thermistor Reference SCPs HP E1501 02 03 ...
Page 324: ...324 Specifications Appendix A 5K Thermistor Reference SCPs HP E1508 09 ...
Page 325: ...Specifications 325 Appendix A RTD Reference SCPs HP E1501 02 03 ...
Page 326: ...326 Specifications Appendix A RTD SCPs HP E1501 02 03 ...
Page 327: ...Specifications 327 Appendix A RTD SCPs HP E1508 09 ...
Page 328: ...328 Specifications Appendix A 2250 Thermistor SCPs HP E1501 02 03 ...
Page 329: ...Specifications 329 Appendix A 2250 Thermistor SCPs HP E1508 09 ...
Page 330: ...330 Specifications Appendix A 5K Thermistor SCPs HP E1501 02 03 ...
Page 331: ...Specifications 331 Appendix A 5K Thermistor SCPs HP E1508 09 ...
Page 332: ...332 Specifications Appendix A 10K Thermistor SCPs HP E1501 02 03 ...
Page 333: ...Specifications 333 Appendix A 10K Thermistor SCPs HP E1508 09 ...
Page 334: ...334 Specifications Appendix A Notes ...
Page 346: ...346 Glossary Appendix C Notes ...
Page 388: ...388 Generating User Defined Functions Appendix F Notes ...