background image

HP-15C

STO g A-E, (i)

Same as above but the stack's Y register contains the row number and 
X the column number, starting from 1.
The value must be present in Z. 
Both X & Y will be popped from the stack so that the value ends up in 
X.

STO g A-E, (i)
RCL g A-E, (i)

Same as above but the stack's Y register contains the row number and 
X the column number, starting from 1.
RCL will pop X & Y from the stack and then push the matrix element 
into X

STO MATRIX 
A-E

X is a number: Store the value of X in all matrix elements.
X is a matrix: Copy matrix in X to the specified matrix. The destination 
matrix will be redimensioned

RCL MATRIX 
A-E

Put the matrix descriptor of the specified matrix in X

x

 A-E, (i)

Exchange X with the matrix element of A-E specified by R1/R0. 
R1 & R0 are not affected

DSE A-E, (i)
ISG A-E, (i)

Decrements/increments the matrix element of A-E or (i) specified by 
R1/R0. R1 & R0 are not affected. See DSE & ISG in section 

Programming

RESULT A-E

Specifies the 

result matrix 

(default is A). This is the matrix that will hold 

the result of a matrix operation. Not all operations require a result 
matrix. The result matrix will automatically be dimensioned so that it 
can properly hold the result. For some matrix operations the result 
matrix can be identical to one of the input matrices

STO RESULT

When a matrix descriptor is already present in X then this matrix will be 
used as the result matrix

RCL RESULT

Recalls the descriptor of the result matrix into X

Unary matrix 
operations

Result in X

Effect on matrix 

specified in X

Effect on RESULT 

matrix

CHS

None

Changes sign of all 
matrix elements

None as long as 
X<>RESULT

1/x

Descriptor of RESULT.
X must be square

None as long as 
X<>RESULT

Inverse of matrix X. 
If it is singular, then 
1/x will calculate the 
inverse of a matrix 
that is close to X.

MATRIX 4

None

Replaced by 
transpose X

T

None as long as 
X<>RESULT

MATRIX 7

Row norm: Largest sum 
of absolute values of all 
rows

None

None

MATRIX 8

Frobenius or Euclidian 
norm of X: Square root 
of the sum of all matrix 
elements

None

None

MATRIX 9

Determinat of matrix.
X must be square

None as long as 
X<>RESULT

LU decomposition of 
matrix X

Scalar matrix operations

8

Summary of Contents for 15C

Page 1: ...umber of uncommitted registers Use DIM to commit them to storage registers Uncommitted registers are automatically converted to program space when needed pp Number of registers containing program instructions One register consists of 7 bytes and can hold 7 program steps except for a few instructions that occupy two bytes n Number of bytes left before next uncommitted register is converted to progr...

Page 2: ...L 0 9 0 9 Recall number from storage register to X register RCL 0 9 0 9 RCL 0 9 0 9 RCL x 0 9 0 9 RCL 0 9 0 9 Register recall arithmetic X OP Register X X 0 9 0 9 Exchange X with one of the storage registers STO I Store X in index register STO x I Register store arithmetic with index reister RCL I Recall value from index register RCL x I Register recall arithmetic with index reister X I Exchange X...

Page 3: ...of X INT Returns the integer part of X yx Y to the power of X Works also for negative Y in case X is integer Calculates X percent of Y Does not pop the stack Percential difference from Y to X Does not pop the stack Trigonometric Functions DEG Set trig mode degrees 360 RAD Set trig mode radians 2π indicated in display GRD Set trig mode grad 400 indicated in display SIN COS TAN Trigonometric functio...

Page 4: ...previous program step but do not execute any program code PRGM Step backwards thru program scolls when held down Inserting steps Program entry starts with line number 1 Line 000 indicates the start of the program space Commands are inserted after the currently displayed line Program code values indicate the row column of a command with the exception that numbers are displayed as such Prefix keys h...

Page 5: ...0 X 0 1 X 0 2 X 0 3 X 0 4 X 0 5 X Y 6 X Y 7 X Y 8 X Y 9 X Y If camparisn is false Skip the next program step If camparisn is true Execute the next program step ISG 0 9 0 9 I Increment and skip if greater This loop command uses the specified register which must contain a value in the form nnnnn xxxyy where nnnnn Current initial loop counter value xxx Comparisn value for loop counter yy Loop counter...

Page 6: ...al part of the number Store STO 1 Re Im STO 2 Re Im Recall RCL 2 RCL 1 f I or RCL 2 Re Im RCL 1 this does not disturb the stack x y Replace both real and imaginary part of X and Y register R R Shift both the real and imaginary part Sqrt x Ln Log 1 x ex hyp sin cos tan hyp 1 sin cos tan All these unary functions work in complex mode as well NOTE To calculate sqrt 1 the complex mode must be already ...

Page 7: ...contains a matrix descriptor then the DIM operation will be performed on the matrix specified in I This indirect method applies to other matrix operations see below RCL DIM A E i Places the matrix dimensions in X and Y A non exisiting matrix has dimensions 0x0 RCL MATRIX A E Put a matrix descriptor in the X register This displays the matrix name and its dimensions STO 0 9 0 9 I RCL 0 9 0 9 I Matri...

Page 8: ...A This is the matrix that will hold the result of a matrix operation Not all operations require a result matrix The result matrix will automatically be dimensioned so that it can properly hold the result For some matrix operations the result matrix can be identical to one of the input matrices STO RESULT When a matrix descriptor is already present in X then this matrix will be used as the result m...

Page 9: ...he Y X order X must be square and have dimensions compatible with Y MATRIX 5 Calculate YT X RESULT where RESULT may neither be X nor Y X Y must have compatible dimension MATRIX 6 Calulatest the residual RESULT Y X RESULT The descriptor of RESULT is placed in X RESULT may neither be X nor Y X Y must have compatible dimension Matrix in LU form Its descriptor is displayed with two dashes after the ma...

Page 10: ...xecuted If X is a scalar it remains unchanged and the next program line is skipped This can be used to test whether X contains a matrix or a scalar Root Finding Solver Memory The solver needs 5 registers These are allocated from the uncommitted registers space see MEM The solver and the numerical integrator see below share their registers SOLVE 0 9 0 9 A E Finds real root of a function This is a v...

Page 11: ...program at the label must calculate the function f X and return the result in X before it executes the RTN When x y ends the stack wil contain these values X The integral of f x Y The uncertainty of the result x y f x X Y Z Upper integration limit T Lower integration limit Note that x y eats up two of the seven possible GSB levels One for x y and one for the calls to the user function The program ...

Reviews: