Gooligum Electronics Baseline and Mid-Range PIC Construction And Operation Manual Download Page 5

© Gooligum Electronics 2015 

 

www.gooligum.com.au 

Baseline and mid-range PIC training and dev board operation guide 

Page 5 

Plug your PICkit 2 or PICkit 3 programmer directly into the 

ICSP

 socket, with the arrow on the 

programmer aligned with the arrow on the PCB (indicating pin 1). 

You would normally use the PICkit 2 or PICkit 3 to power the training board.  These programmers can 
supply up to around 30 mA.  If you need more current than this (up to 1 A), or if you wish to use the 
training board without having a PICkit 2 or PICkit 3 attached, you can connect a regulated power supply 
to the 

DC power

 socket. 

This socket accepts a standard 5.5 mm barrel DC plug, with a 2.1 mm positive centre pin. 

Note that there is no voltage regulator on the training board.  A diode offers polarity protection, also 
dropping the supply voltage by at least 0.6 V.  Since most baseline and mid-range PICs (including those 
used in the Gooligum tutorials) will work with a supply voltage of up to 5.5 V, you can safely use a power 
supply of up to 6 V to power most

3

 PICs with this training board – but it must be regulated!   

A good choice for an external power supply is a 5 V regulated unit, which will supply around 4.3 V (after 
the diode voltage drop) to the PIC. 

 

The 

LEDs

 are connected, via jumpers and 330 Ω resistors, to PIC pins as marked on the circuit board. 

Various PICs use different names for the same pin.  For example, pin 2 of socket U2 is referred to as 

GP5

 

if you plug a 12F509 into that socket, 

RA5

 if you plug in a 16F684, and 

RB5

 if you use a 16F506.  For 

that reason, the LED connected to that pin is labelled ‘

GP5 / RA5 / RB5

.  On the other hand, pin 7 is 

called 

RC3

 on all 14-pin PICs, so the LED on that pin is labelled simply ‘

RC3

’. 

LEDs are available on all output pins except 

RC4

 and 

RC5

To enable (connect) an LED, simply close its associated jumper. 

 

Pushbutton 

switches

 are connected to 

GP/RA/RB2

 and 

GP/RA/RB3/

MCLR  

 via 1 kΩ isolation resistors.  

They are 

active low

: they will pull the input pin low when pressed (the isolation resistors ensure that the 

PIC won’t be damaged if a button is pressed while the pin connected to it is configured as a high output).  

The inputs are normally held high, while the switch is open, by either an external 10 kΩ pull-up resistor, 
or an internal weak pull-up.  Each external pull-up resistor is enabled by closing its associated jumper. 

 

A 10 kΩ 

potentiometer

 and light-dependent resistor (

LDR

, or CDS photocell), forming one leg of a 

potential divider, are available as analog voltage sources.  Either can be connected, via jumper JP24, to pin 

AN0 / CIN+ / C1IN+

, to act as either an ADC or comparator input. 

second LDR

 can be connected, via jumper block JP25, to ADC input 

AN2

 or comparator inputs 

C2IN+

 

or 

CIN- / C1IN-

 

The board includes a 32.768 kHz 

oscillator

, implemented with a watch crystal and CMOS inverter.  Its 

buffered output can be used to drive Timer0 (in counter mode), by using JP22 to connect it to the 

T0CKI

 

pin.  It can also be used as an external signal to drive the processor clock, via jumper block JP20. 

In a real PIC application, if you needed a 32.768 kHz clock, you’d be more likely to simply use a watch 
crystal with the PIC’s internal oscillator.  The training board includes a second 32.768 kHz crystal (with 
load capacitors), which can be connected to 

OSC1

 (on one side) via JP20 and to 

OSC2

 (on the other 

                                                      

3

 

some PICs (mostly ‘LF’ variants) will only tolerate a supply of up to 3.6 V- you should limit your external power 

supply to no more than 4 V if you are using one of these devices 

 

Summary of Contents for Baseline and Mid-Range PIC

Page 1: ...sy to follow the Gooligum baseline mid range and introductory enhanced mid range lessons It works with a PICkit 2 or PICkit 3 programmer and supports all 8 and 14 pin baseline mid range and enhanced m...

Page 2: ...an continue to use the board for PIC development Construction If your training board came fully assembled you can ignore this section The training board kit consists of a printed circuit board a set o...

Page 3: ...verlay shows BC337 BC547 or BC548 transistors may have been supplied with your kit That s ok they ll all work fine in this application driving the 7 segment displays and have the same pin out Whicheve...

Page 4: ...et U2 marked 16F is for 14 pin PIC16F devices Note you must plug a PIC into ONLY ONE socket at once If you ve been using a PIC10F and want to use a PIC12F or PIC16F remove the PIC10F from the 10F sock...

Page 5: ...all 14 pin PICs so the LED on that pin is labelled simply RC3 LEDs are available on all output pins except RC4 and RC5 To enable connect an LED simply close its associated jumper Pushbutton switches...

Page 6: ...very position in jumper block JP4 That is you use six shunts at once in JP4 Connect segment E to either RA RB2 or RA RB4 by placing a shunt in one of the two positions in jumper block JP5 selecting th...

Page 7: ...he piezo can be driven at higher volume by a double ended or half bridge PWM output by placing a shunt across positions 2 and 3 of JP23 connecting its other side to PWM output P1B Finally every PIC pi...

Page 8: ...E JP6 1 2 Connects common cathode of LED digit 1 to ground 2 3 Connects common cathode of LED digit 1 to transistor controlled by RC5 JP7 Enables external pull up resistor on GP2 RA2 RB2 JP8 Connects...

Page 9: ...side connects to P1A 2 3 Connects one side of piezo sounder to P1B other side connects to P1A JP24 1 2 Connects 10 k potentiometer to RA0 CIN C1IN 2 3 Connects LDR1 to AN0 CIN C1IN JP25 1 Connects LD...

Page 10: ...uld place shunts across all six jumpers numbered 1 6 in the block Where a table cell is blank the jumper should be left open In many cases it won t matter if additional jumpers are connected but to en...

Page 11: ...LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4 5 6 7 8 9 10 11 12 13...

Page 12: ...0 digit 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example...

Page 13: ...thode GP RA2 pull up RC5 digit 1 RA5 digit 2 RC0 digit 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2...

Page 14: ...D RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9 1a 1 2 1...

Page 15: ...E digit 1 cathode GP RA2 pull up RC5 digit 1 RA5 digit 2 RC0 digit 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0...

Page 16: ...digit 1 RA5 digit 2 RC0 digit 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq...

Page 17: ...LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 7 1 all...

Page 18: ...ED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4 5 6 7 8 9 10...

Page 19: ...git 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4...

Page 20: ...C5 digit 1 RA5 digit 2 RC0 digit 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var F...

Page 21: ...LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 11 1 3 2 3 3 4...

Page 22: ...A5 digit 2 RC0 digit 3 GP RA0 LED GP RA1 LED GP RA2 LED GP RA4 LED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog L...

Page 23: ...ED GP RA5 LED RC0 LED RC1 LED RC2 LED RC3 LED Clock source Crystal 32 kHz T0CKI Piezo AN0 source LDR2 Var Freq digital Var Freq analog Lesson Example 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21...

Page 24: ...10 k 5 1 4W resistors 2 22 k 5 1 4W resistors 1 100 k 5 1 4W resistor 1 10 M 5 1 4W resistor 1 10 k trimpot with thumbwheel e g Bourns 3352T 1 100 k trimpot with thumbwheel e g Bourns 3352T 3 BC337 NP...

Page 25: ...r snap into 16 1 2 headers 1 1 9 pin 0 1 snappable header snap into 3 1 3 headers 1 2 19 pin 0 1 snappable header snap into 1 2 3 1 2 4 1 2 6 and 3 2 2 headers 1 13 mm PCB ext drive piezo sounder e g...

Page 26: ...509 I P MCU 1 PIC12F629 I P MCU 1 PIC12F1501 I P MCU 1 PIC16F506 I P MCU 1 PIC16F684 I P MCU 1 PIC16F1824 I P MCU 1 1 nF ceramic capacitor 1 100 nF ceramic capacitor 2 1 F ceramic capacitor 1 100 5 1...

Page 27: ...motor control examples optional Qty Description 2 PSMN022 30PL or similar N channel logic level MOSFETs 2 NDP6020P or similar P channel logic level MOSFETs 1 SN754410 or L293D quad half H driver with...

Page 28: ...Gooligum Electronics 2015 www gooligum com au Baseline and mid range PIC training and dev board operation guide Page 28 Appendix C Schematics Sheet 1 Main...

Page 29: ...Gooligum Electronics 2015 www gooligum com au Baseline and mid range PIC training and dev board operation guide Page 29 Sheet 2 Digital I O...

Page 30: ...Gooligum Electronics 2015 www gooligum com au Baseline and mid range PIC training and dev board operation guide Page 30 Sheet 3 Oscillator section...

Page 31: ...Gooligum Electronics 2015 www gooligum com au Baseline and mid range PIC training and dev board operation guide Page 31 Sheet 4 Analog...

Reviews: