Fairchild SEMICONDUCTOR AN-7502 Application Note Download Page 3

©2002 Fairchild Semiconductor Corporation

Application Note 7502 Rev. A1

State 2: MOS ActIve, JFET ActIve

This state graphically illustrates the dramatic influence that
the JFET has on the power MOSFET drain-voltage wave-
form. Instead of having to discharge C

x

 from V

DD

 to ground,

the lateral MOSFET need only swing V

X

 to ground, a much

smaller voltage thanks to the grounded gate JFET. Since the
interaction of R

L

 with the device capacitances has a second-

order effect on the drain voltage, the equivalent circuit of Fig-
ure 7 predicts a drain voltage change of: 

dV

G

/dt = g

M

R

L

l

G

/[C

GS

 + C

X

(1 + g

M

/g

MJ

)]

In all but the smallest power-MOSFET devices, C

x

 is several

thousand picofarads and g

M

/g

MJ

 is of the order of 3:1.

Power-MOSFET devices exhibit a high dV

D

/dt switching rate

because of the cascode-connected JFET, not because
C

RSS 

(C

RSS

 = C

GD

) is a small value, as zero-drain-current

data sheet capacitance values might lead one to believe. If
C

RSS

 were, in actuality, small, long drain voltage tails would

not exist. The tail response is a direct result of JFET satura-
tion. In order to delineate the transition from state 2 to state
3, a drain voltage at which the transition occurs must be
defined. V

DK

 is the knee voltage at which linear extrapola-

tions of drain-voltage slopes intersect. The time duration of
state 2 is:

t

2

(t

6

) = (V

DD

 - V

DK

)[C

GS

 + C

X

(1 + g

M

/g

M

J)]/g

M

R

L

I

G

State 3: MOS Active, JFET Saturated

When the JFET saturates, the g

MJ

V

X

 current generator

becomes a short circuit and the equivalent circuit predicts: 

dV

D

/dt = g

M

R

L

I

G

/[C

GS

 + C

X

(1 + g

M

R

L

)]

This is the Miller effect so often referred to in older texts that
describe the behavior of grounded-cathode vacuum-tube
amplifier circuits. Allowing for the fact that 1 + g

M

R

L

 is

approximately equal to g

M

R

L

 and C

X

(1 + g

M

R

L

) is very

much  larger  than  C

GS

, the expression for drain-voltage tail

time is:

t

3

(t

5

) = (V

DK

 - V

D(SAT)

)C

x

/l

G

State 4: MOS Saturated, JFET Saturated (Turn-Off)

In this state, in addition to g

MJ

V

X

 being shorted, the g

M

V

G

 cur-

rent generator is shorted, and I

G

 is occupied with charging C

X

and C

GS

, in parallel, from the peak value of V

G

 to V

G(SAT)

. The

time required for this is: 

t

4

 = (V

G

 - V

G(SAT)

)(C

GS

 + C

x

)/I

G

Since a value for C

GS

 may be measured independently of

switching time, the method described is the simplest way of
determining C

X

.

On turn-off, the state time equations are equally applicable,
but in reverse order (states 5 and 6); see the idealized wave-
form of Figure 4.

Experimental Verification

The four switching states just analyzed indicate that for a
given device, all four switching state times are inversely pro-
portional to the magnitude of the gate drive current. Figure 8
illustrates the switching performance of a typical power
MOSFET across three decades of gate drive current and
time. In each case the data slope is almost a perfect -1. 

A New Device Characterization

Figure 8 could not be a reasonable device data sheet pre-
sentation because it does not give the designer any informa-
tion on a typical value for C

X

, nor does it convey how V

DK

,

g

M

, g

M

/g

MJ

, and V

G

(sat) vary with drain current. What would

be of enormous value to the designer is a plot of V

D

(t), V

G

(t)

for selected values of V

DD

 and I

D

 within device ratings.

A reasonable characterization would be as follows:

1. The x axis would be normalized in terms of gate current drive.

2. The y axis would be normalized in terms of percent maximum rated 

BV

DSS

 (0 to 100%).

3. R

L

 = BV

DSS

/I

D(max)

 would define the drain load resistance.

4. Four plots of V

D

(t), V

G

(t) at 100%, 75%, 50%, and 25% BV

DSS(max)

 

would be shown.

FIGURE 8.

CONSTANT GATE CURRENT SWITCHING TIME

Figure 9 is such a plot for the RFM15N15 power MOSFET.
With such a plot, a designer can estimate device switching
performance under any resistive gate/drain conditions.

10

1

0.1

0.01

1

10

100

1000

RFM15N15
V

DD

 = 75V

I

D

R

O

V

G

= 7.5A

 

= 10V

(t

) -

 MI

C

R

OS

E

C

ON

D

S

(I

G

) - MILLIAMPERES

DATA

t

D(OFF)

t

R

t

F

t

D(ON)

THEORY

Application Note 7502

Summary of Contents for SEMICONDUCTOR AN-7502

Page 1: ...nds Device Models The keystone of an understanding of power MOSFET switching performance is the realization that the active device is bimodal and must be described using a model that accounts for the...

Page 2: ...tate 1 MOS Off JFET Off In a power MOSFET device no drain current will flow until the device s gate threshold voltage Vgs TH is reached Dur ing this time the gate s current drive is only charging the...

Page 3: ...t5 VDK VD SAT Cx lG State 4 MOS Saturated JFET Saturated Turn Off In this state in addition to gMJVX being shorted the gMVG cur rent generator is shorted and IG is occupied with charging CX and CGS in...

Page 4: ...switching time versus 1 RO to be of the same form as those obtained for a step current drive This is exactly the case as Figure 10 is merely a vari ation of Figure 8 Using the relationships of Table 1...

Page 5: ...complexity FIGURE 10 CONSTANT GATE VOLTAGE SWITCHING TIME Using the Characterization Curve Figure 9 To estimate the switching times for an RFM15N15 power MOSFET under the conditions VG 10V VDD 75V RO...

Page 6: ...and the 90 level by another Device comparisons based on the classical switching definition can be very misleading Appendix A Analysis for Resistive Step Voltage Inputs Step Voltage Gate Drive To obtai...

Page 7: ...time The equivalent circuit then predicts State 4 Mos Saturated JFET Saturated Turn off Both equivalent circuit generators are short circuits and the gate drive is discharging CX in parallel with CGS...

Page 8: ...on Source Gate Drive Figure B 3 FIGURE B 3 COMMON SOURCE GATE DRIVE CIRCUIT Turn On RO RD drain to ground capacitance of driving device adds to CGS of driven MOSFET Turn Off RO rDS ON of driving MOSFE...

Page 9: ...ife support device or system or to affect its safety or effectiveness PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Preliminary...

Reviews: