EPC EPC9113 Quick Start Manual Download Page 3

QUICK START GUIDE

EPC – EFFICIENT POWER CONVERSION CORPORATION   |   

WWW.EPC-CO.COM

   |   COPYRIGHT 2017   |                                                                                                    | 3

Demonstration System EPC9113

MECHANICAL ASSEMBLY 

The assembly of the EPC9113 Wireless Demonstration kit is simple and 
shown in Figure 1. The source coil and amplifier have been equipped 
with SMA connectors. The source coil is simply connected to the 
amplifier. 
The device board does not need to be mechanically attached to the 
source coil.  
The coil sets of the EPC9111 and EPC9112 (both the source and 
device coils) are not compatible with the EPC9113/4 kit. To prevent 
inadvertent connection of either, the connectors of the amplifier and 
coils have been changed from reverse polarity to standard polarity. 
Please contact EPC for modifications to the original coil set to ensure 
compatibility with the EPC9509 amplifier.

DETAILED DESCRIPTION  

The Amplifier Board (EPC9509)
Figure 2 shows the system block diagram of the EPC9509 ZVS class-D 
amplifier with pre-regulator and Figure 3 shows the details of the 
ZVS class-D amplifier section. The pre-regulator is used to control 
the ZVS class-D wireless power amplifier based on three feedback 
parameters 1) the magnitude of the coil current indicated by the 
green LED, 2) the DC power drawn by the amplifier indicated by 

the yellow LED and 3) a  maximum supply voltage to the amplifier 
indicated by the red LED. Only one parameter at any time is used to 
control the pre-regulator with the highest priority being the maximum 
voltage supplied to the amplifier followed by the power delivered  
to the amplifier and lastly the magnitude of the coil current. The 
maximum amplifier supply voltage is pre-set to 52 V and the maximum 
power drawn by the amplifier is pre-set to 16 W. The coil current 
magnitude is pre-set to 800 mA

RMS

 but can be made adjustable  

using P25.  The pre-regulator comprises a SEPIC converter that can 
operate at full power from 17 V through 24 V. 
The pre-regulator can be bypassed by connecting the positive supply 
directly to the ZVS class-D amplifier supply after removing the jumper 
at location JP1 and connecting the main positive supply to the bottom 
pin. JP1 can also be removed and replaced with a DC ammeter to directly 
measure the current drawn by the amplifier. When doing this observe 
a low impedance connection to ensure continued stable operation of 
the controller. Together with the Kelvin voltage probes (TP1 and TP2) 
connected to the amplifier supply, an accurate measurement of the 
power drawn by the amplifier can be made. 
The EPC9509 is also provided with a miniature high efficiency switch-
mode 5 V supply to power the logic circuits on board such as the gate 
drivers and oscillator.
The amplifier comes with its own low supply current oscillator that is  
pre-programmed to 6.78 MHz ± 678 Hz. It can be disabled by placing 
a jumper into JP70 or can be externally shutdown using an externally  
controlled open collector / drain transistor on the terminals of JP70 (note 
which is the ground connection). The switch needs to be capable of  
sinking at least 25 mA. An external oscillator can be used instead of the 
internal oscillator when connected to J70 (note which is the ground 
connection) and the jumper (JP71) is removed.
The pre-regulator can also be disabled in a similar manner as the oscillator 
using JP50. However, note that this connection is floating with respect to 
the ground so removing the jumper for external connection requires a 
floating switch to correctly control this function. Refer to the datasheet of 
the controller IC and the schematic in this QSG for specific details.
The ZVS timing adjust circuits for the ZVS class D amplifiers are each 
independently settable to ensure highest possible efficiency setting 
and includes separate ZVS tank circuits. This allows OOK modulation 
capability for the amplifier.
The EPC9509 is provided with 3 LED’s that indicate the mode of 
operation of the system. If the system is operating in coil current limit 
mode, then the green LED will illuminate. For power limit mode, the 
yellow LED will illuminate. Finally, when the pre-regulator reaches 
maximum output voltage the red LED will illuminate indicating that 
the system is no longer A4WP compliant as the load impedance is too 
high for the amplifier to drive. When the load impedance is too high 
to reach power limit or voltage limit mode, then the current limit LED 
will illuminate incorrectly indicating current limit mode. This mode 
also falls outside the A4WP standard and by measuring the amplifier 
supply voltage across TP1 and TP2 will show that it has nearly reach the 
maximum value limit.

Table 2: Performance Summary (T

A

 = 25 °C) Category 3 Device Board

Symbol

Parameter

Conditions Min

Max Units

V

OUT

Output Voltage Range

0

38

V

I

OUT

Output Current Range

0

1.5#

A

# Actual maximum current subject to operating temperature limits

Table 1: Performance Summary (T

A

 = 25°C) EPC9509 

Symbol

Parameter

Conditions

Min

Max Units

V

IN

Bus Input Voltage Range – Pre-

Regulator Mode

Also used in 

bypass mode 

for logic supply

17

24

V

V

IN

Amp Input Voltage Range – 

Bypass Mode

0

52

V

V

OUT

Switch-Node Output Voltage 

52

V

I

OUT

Switch-Node Output  

Current (each)

1*

A

V

extosc

External Oscillator Input 

Threshold

Input ‘Low’

-0.3

0.8

V

Input ‘High’

2.4

5

V

V

Pre_Disable

Pre-Regulator Disable 

Voltage Range

Floating

-0.3

5.5

V

I

Pre_Disable

Pre-Regulator Disable 

Current

Floating

-10

10

mA

V

Osc_Disable

Oscillator Disable 

Voltage Range

Open Drain/

Collector

-0.3

5

V

I

Osc_Disable

Oscillator Disable 

Current

Open Drain/

Collector

-25

25

mA

V

sgnDiff

Differential or Single-Select 

Voltage

Open Drain/

Collector

-0.3

5.5

V

I

sgnDiff

Differential or Single-Select 

Current

Open Drain/

Collector

-1

1

mA

* Maximum current depends on die temperature – actual maximum current will be subject to switching 
frequency, bus voltage and thermals.

Summary of Contents for EPC9113

Page 1: ...Demonstration System EPC9113 Quick Start Guide 6 78MHz ZVSClass DWirelessPowerSystem usingEPC2108 EPC2036...

Page 2: ...adjusts the voltage supplied to the ZVS Class D amplifier based on the limits of 3 parameters coil current DC power delivered and maximum voltage the coil current has the lowest priority followed by...

Page 3: ...8 Hz It can be disabled by placing a jumper into JP70 or can be externally shutdown using an externally controlledopencollector draintransistorontheterminalsofJP70 note which is the ground connection...

Page 4: ...required predominant operating value such as 24 V but NEVER exceedthe absolute maximum voltage of 52V 6 Whileobservingtheoscilloscopeadjusttheapplicablepotentiometers to so achieve the green waveform...

Page 5: ...rature of the EPC devices using an IR camera 3 Never connect the EPC9509 amplifier board into your VNA in an attempt to measure the output impedance of the amplifier Doing so will severely damage theV...

Page 6: ...Figure 2 Block diagram of the EPC9509 wireless power amplifier VAMP Q1_a LZVS12 Q2_a Q1_b Q2_b LZVS2 CZVS2 CZVS1 LZVS1 Coil Connection Single Ended Operation Jumper Pre Regulator Pre Regulator Jumper...

Page 7: ...Connection Matching Device Output Current 300 m Shunt Output Voltage 5 V LED Output Voltage 37 V LED Load Current SeeNotesfordetails ONLYtobeusedwith Shuntremoved 17 24 VDC VIN Supply Note Polarity S...

Page 8: ...of the switch nodes using the hole and ground post Figure 10 ZVS timing diagrams Shoot through Q2 turn on Q1 turn off VAMP 0 time ZVS Partial ZVS ZVS Diode Conduction Shoot through Q1 turn on Q2 turn...

Page 9: ...J106KN T 19 3 C90 C91 C92 1 F 25 V W rth 885012206076 20 2 Czvs1 Czvs2 1 F 50 V W rth 885012207103 21 3 D1_a D1_b D95 40 V 300 mA ST BAT54KFILM 22 10 D2_a D2_b D21 D40 D41 D42 D71 D72 D77 D78 40 V 30...

Page 10: ...RKF1001X 68 1 R54 0 Yageo RC0402JR 070RL 69 1 R60 40 m 0 4 W Vishay Dale WSLP0603R0400FEB 70 1 R61 150 m 0 25 W Vishay Dale WSL0805R1500FEA18 71 2 R71 R78 124 Panasonic ERJ 2RKF1240X 72 2 R72 R77 22 P...

Page 11: ...L 3 1 PCB1 Cat3PRU Coastal Circuits Cat3DeviceBoard 4 2 CM1 CM11 470 pF Vishay VJ1111D471KXLAT 5 4 CM2 CM12 CMP1 CMP2 DNP 6 3 CM5 CM7 CMP3 CMP4 DNP 7 1 CM6 56 pF Vishay VJ0505D560JXPAJ 8 1 CMP8 68 pF...

Page 12: ...robeloop 1 TP 2 V AMP V AMP 5 V G N D L IN OUT H IN a EP C9509_SE_ZVSclass D_Rev1_0 SchDoc 390 nH L zvs1 390 nH L zvs2 DNP L zvs12 1 F 50 V C zvs2 V AMP V AMP 5 V G ND L IN OUT H IN b EPC9509_SE_ZVScl...

Page 13: ...5113TM OUT GU GL D1 BAT54KFILM 5 V 4 7 V 4 7 V GL 20 1 2 R2 SDM03U40 D3 EMPTY Synchronous Bootstrap Power Supply 1 F 10 V C1 D4 CD0603 Z5V1 Gbtst 27k 1 2 R3 D2 SDM03U40 22 nF 25 V C3 GND 5 V OUT V AMP...

Page 14: ...0 UCC27611DRV 47k 1 2 R33 D36 D35 Current Mode Power Mode Pmon Imon Vsepic V OUT 634 1 2 R35 5 V 8 2k 1 1 2 R32 51 0k 1 1 2 R31 V OUT V Vsepic Pcmp DC Power Monitor Isns Isns Isns Vfd bk Pmon Output V...

Page 15: ...D81 40 V 1 A D83 10 F 50 V C85 VRECT 100 nF 50V C84 VRECT VRECT VOUT VOUT 1 2 300 m 1W R80 1 Male Vert 1 2 J81 RX Coil SMD probe loop 1 TP1 SMD probe loop 1 TP2 Kelvin Output Current SMD probe loop 1...

Page 16: ...rcompliancewiththeEuropeanUniondirectiveonelectromagneticcompatibilityoranyothersuchdirectivesorregulations Asboard builds are at times subject to product availability it is possible that boards may c...

Reviews: