EPC EPC90147 Quick Start Manual Download Page 8

QUICK START GUIDE

EPC90147

EPC – POWER CONVERSION TECHNOLOGY LEADER   |   

EPC-CO.COM

   |   ©2022   |    

 

|    8

39.0

14.0

5.2

20.0

A

9.2

17.0

8.0

3.6

11.0

28.0

5.2

20.0

9.2

29.2

11.0

3.1

9.0

14.0

16.7

7.5

22.0

3.1

1.3

7.5

23.0

16.7

Ø

4.6 (x3)

Ø

4.0

M2 screw flat heat

countersunk,

Scale 8:1

Units: mm

Part thickness: 1.5 mm

Units: mm

Ø

2.2 thr

u       45°C

>  

39.0

EFFICIENT POWER CONVERSION

EFFICIENT POWER CONVERSION

Figure 10: Heat-spreader details

Figure 11: Insulator sheet details with opening for the 

TIM with location of the FETs

The design of the heat-spreader is shown in figure 10 and can 

be made using 

aluminum

 or 

tellurium copper

 for higher 

performance.
The heat-spreader is held in place using countersunk screws 

that fasten to the mechanical spacers which will accept M2 x 

0.4 mm thread screws such as McMasterCarr 91294A002.
When assembling the heatsink, it may be necessary to add a 

thin insulation layer to prevent the heat-spreader from short 

circuiting with components that have exposed conductors 

such as capacitors and resistors, as shown in figure 11. 

Note 

that the heat-spreader is ground connected by the lower 

most mounting post

. A rectangular opening in the insulator 

must be provided to allow the TIM to be placed over the FETs 

to be cooled with a minimum clearance of 1 mm on each side 

of the rectangle encompassing the FETs. The TIM will then 

be similar in size or slightly smaller than the opening in the 

insulator shown by the red dashed outline in figure 11.
EPC recommends Laird P/N: A14692-30, Tgard™ K52 with 

thickness of 0.051 mm the for the insulating material.
A TIM is added to improve the interface thermal conductance 

between the FETs and the attached heat exchanger. The 

choice of TIM needs to consider the following characteristics:

•  Mechanical compliance

 – During the attachment of the 

heat spreader, the TIM underneath is compressed from 

its original thickness to the vertical gap distance between 

the spacers and the FETs. This volume compression exerts 

a force on the FETs. A maximum compression of 2:1 is 

recommended for maximum thermal performance and to 

constrain the mechanical force which maximizes thermal 

mechanical reliability.

•  Electrical insulation

 – The backside of the eGaN FET is a 

silicon substrate that is connected to source and thus the 

upper FET in a half-bridge configuration is connected to the 

switch-node. To prevent short-circuiting the switch-node 

to the grounded thermal solution, the TIM must be of high 

dielectric strength to provide adequate electrical insulation 

in addition to its thermal properties.

•  Thermal performance

 – The choice of thermal interface 

material will affect the thermal performance of the thermal 

solution. Higher thermal conductivity materials is preferred 

to provide higher thermal conductance at the interface.

EPC recommends the following thermal interface materials: 
• 

t-Global

 

P/N: TG-A1780 X 0.5 mm 

(highest conductivity of 17.8 W/m·K)

• 

t-Global

 

P/N: TG-A6200 X 0.5 mm 

(moderate conductivity of 6.2 W/m·K)

• 

Bergquist

 

P/N: GP5000-0.02   

(~0.5 mm with conductivity of 5 W/m·K)

• 

Bergquist

 

P/N: GPTGP7000ULM-0.020  (conductivity of 7 W/m·K)

NOTE

. The EPC90147 development board does not have any current or thermal protection on board. For more information 

regarding the thermal performance of EPC eGaN FETs, please consult:
D. Reusch and J. Glaser, 

DC-DC Converter Handbook, a supplement to GaN Transistors for Efficient Power Conversion,

 

First Edition, Power Conversion Publications, 2015.

Summary of Contents for EPC90147

Page 1: ...Development Board EPC90147 Quick Start Guide 100VHalf bridgewithGateDrive UsingEPC23102 Revision 1 0...

Page 2: ...k start guide Table 1 Performance Summary TA 25 C EPC90147 Symbol Parameter Conditions Min Nominal Max Units VDD Gate Drive Input Supply Range 7 5 12 V VIN Bus Input Voltage Range 1 80 V IOUT Switch N...

Page 3: ...te jumper positions for J630 mode selection as shown in figure 2 a for a single input buck converter blue jumper across pins 1 2 of J630 b for a single input boost converter blue jumpers across pins 3...

Page 4: ...te drive supply to VDD J1 Pin 1 and ground return to GND J1 Pin 2 indicated on the bottom side of the board 4 With power off connect the input PWM control signal to PWM1 and or PWM2 according to the i...

Page 5: ...3 With power off connect the gate drive supply to VDD J1 Pin 1 and ground return to GND J1 Pin 2 indicated on the bottom side of the board 4 With power off connect the input PWM control signal to PWM...

Page 6: ...ve voltage probes e g TPP1000 measuring switch node using MMCX connector probe adaptor is available PN 206 0663 xx NOTE For information about measurement techniques the EPC website offers AN023 Accura...

Page 7: ...d with three mechanical spacers that can be used to easily attach a heat spreader or heatsink as shown in figure 9 a and only requires a thermal interface material TIM a custom shape heat spreader hea...

Page 8: ...onductance between the FETs and the attached heat exchanger The choiceofTIMneedstoconsiderthefollowingcharacteristics Mechanical compliance During the attachment of the heat spreader the TIM underneat...

Page 9: ...ELECTRICAL PERFORMANCE Measure Waveforms Table 2 Test conditions Parameter Max Units Regulated Input voltage 48 V Regulated Output voltage 12 V Switching frequency fS 500 1000 1500 kHz Inductor mounte...

Page 10: ...veforms when operating from 48 V at 500 kHz and delivering 10 A into a 12 V load Figure 14 Measured inductor current and switch node waveforms when operating from 48 V at 500 kHz and delivering 15 A i...

Page 11: ...Setting Condition fSW 500 kHz fSW 1 MHz Enabled nEN low VIN 48 V 40 mA 58 mA Disabled nEN high 3 6 mA 5 1 mA Figure 15 Measured efficiency and power loss operating at various switching frequencies and...

Page 12: ...wing the case temperature when operating under the following conditions fS 1 MHz IOUT 17 A output 25 C ambient and high airflow Figure 18 Measured thermal image showing the case temperature when opera...

Page 13: ...thatarenotRoHScompliant EfficientPowerConversionCorpora tion EPC makesnoguaranteethatthepurchasedboardis100 RoHScompliant TheEvaluationboard orkit isfordemonstrationpurposesonlyandneithertheBoardnorth...

Reviews: