background image

 

Power 15 Brushless Outrunner Instructions 

 

Thank you for purchasing the E-flite Power 15 Brushless Outrunner motor.  The Power 15 is designed to deliver clean and quiet power for 15-size sport and 
scale airplanes weighing 36- to 56-ounces (1020- to 1590-grams), 3D airplanes 32- to 40-ounces (910- to 1135-gram), or models requiring up to 425 watts 
of power.    

 
Power 15 Brushless Outrunner Features: 

• Equivalent to a 15-size glow engine for sport and scale airplanes weighing 36- to 56-ounces (1020- to 1590-grams) 
• Ideal for size 3D airplanes 32- to 40-ounces (910- to 1135-gram) 
• Ideal for models requiring up to 425 watts of power 
• High torque, direct drive alternative to inrunner brushless motors 
• Includes mount, prop adapters, and mounting hardware 
• Quiet, lightweight operation 
• External rotor design, 5mm shaft can easily be reversed for alternative motor installations 
• High quality construction with ball bearings and hardened steel shaft 
• Slotted 12-pole outrunner design 
 

Power 15 Specifications 

 

  

Diameter: 

35mm 

(1.4 

in) 

     

Case Length: 48mm (1.9 in)   

 

 

 

Weight: 152g (5.4 oz) 

 

Shaft Diameter: 5mm (.2 in) 

 

 

EFLM4015A 

Kv: 950 (rpms per volt) 
Io: 2A @ 10V (no load current)

 

Ri: .03 ohms (resistance) 
Continuous Current: 34A* 
Max Burst Current: 42A* 
Watts: up to 425 
Cells: 8-12 Ni-MH/Ni-Cd or 3-4S Li-Po 
Recommended Props: 10x6 to 13x6.5  
Brushless ESC: 40-45 Amp 
 
* Maximum Operating Temperature: 220 degrees Fahrenheit        
* Adequate cooling is required for all motor operation at maximum current levels.  
* Maximum Burst Current duration is 15 seconds.  Adequate time between maximum burst intervals is required for proper cooling and to avoid overheating 
the motor.   
* Maximum Burst Current rating is for 3D and limited motor run flights.  Lack of proper throttle management may result in damage to the motor since 
excessive use of burst current may overheat the motor.   
 

Determine a Model’s Power Requirements: 

1. Power can be measured in watts.  For example: 1 horsepower = 746 watts 
2. You determine watts by multiplying ‘volts’ times ‘amps’.  Example: 10 volts x 10 amps = 100 watts

 

 

Volts x Amps = Watts 

 
3. You can determine the power requirements of a model based on the ‘Input Watts Per Pound’ guidelines found below, using the flying weight of the model 
(with battery): 
 

 

50-70 watts per pound; Minimum level of power for decent performance, good for lightly loaded slow flyer and park flyer models 

 

70-90 watts per pound; Trainer and slow flying scale models 

 

90-110 watts per pound; Sport aerobatic and fast flying scale models 

 

110-130 watts per pound; Advanced aerobatic and high-speed models 

 

130-150 watts per pound; Lightly loaded 3D models and ducted fans 

 

150-200+ watts per pound; Unlimited performance 3D and aerobatic models 

 
NOTE: These guidelines were developed based upon the typical parameters of our E-flite motors.  These guidelines may vary depending on other motors 
and factors such as efficiency and prop size. 
 
4. Determine the Input Watts Per Pound required to achieve the desired level of performance: 
 
Model: 15-size 3D ARF 
Estimated Flying Weight w/Battery: 2.4 lbs 
Desired Level of Performance: 150-200+ watts per pound; Unlimited performance 3D and aerobatics 
 
 

2.4 lbs x 150 watts per pound = 360 Input Watts of total power (minimum) 

          

    required to achieve the desired performance 

 

5. Determine a suitable motor based on the model’s power requirements.  The tips below can help you determine the power capabilities of a particular 
motor and if it can provide the power your model requires for the desired level of performance: 
 

 

Most manufacturers will rate their motors for a range of cell counts, continuous current and maximum burst current. 

 

In most cases, the input power a motor is capable of handling can be determined by: 
 

Average Voltage (depending on cell count) x Continuous Current = Continuous Input Watts 
 
Average Voltage (depending on cell count) x Max Burst Current = Burst Input Watts 

  

Summary of Contents for EFLM4015A

Page 1: ...Determine a Model s Power Requirements 1 Power can be measured in watts For example 1 horsepower 746 watts 2 You determine watts by multiplying volts times amps Example 10 volts x 10 amps 100 watts Volts x Amps Watts 3 You can determine the power requirements of a model based on the Input Watts Per Pound guidelines found below using the flying weight of the model with battery 50 70 watts per pound...

Page 2: ... PRO LITE 2100mAh 11 1V 3 Cell THP21003SPL Flying Weight w Battery 2 1 lbs Amps Volts Watts Input Watts Pound RPM 27 8 10 4 289 138 8200 Expect higher speeds and lower thrust for mild 3D aerobatics Average duration is approximately 7 9 minutes depending on throttle management Option 2 Motor Power 15 ESC E flite 40A Brushless V2 EFLA312B Prop APC 11x7E APC11070E Battery Thunder Power PRO LITE 4200m...

Page 3: ...to the motor please use extreme caution Stay clear of the rotating propeller since spinning propellers are very dangerous as the motors produce high amounts of torque 9 Never disassemble the motor This will void any warranty Safety Precautions This is a sophisticated hobby product and not a toy It must be operated with caution and common sense and requires some basic mechanical ability Failure to ...

Page 4: ...or safety operation and maintenance It is essential to read and follow all the instructions and warnings in the manual prior to assembly setup or use in order to operate correctly and avoid damage or injury Questions Assistance and Repairs Your local hobby store and or place of purchase cannot provide warranty support or repair Once assembly setup or use of the product has been started you must co...

Reviews: