background image

 

DS_NE12S06A_06302008 

9

 

THERMAL CURVES (VERTICAL)

 

Figure 26: 

Temperature measurement location* The allowed 

maximum hot spot temperature is defined at 113

 

NE12S0A0V06(standard)  Output Current vs. Ambient Temperature and Air Velocity

@Vin=12V Vout=0.9V (Either Orientation)

0

1

2

3

4

5

6

25

30

35

40

45

50

55

60

65

70

75

80

85

Natural

Convection

200LFM

  Output Current (A)

      Ambient Temperature (

)

300LFM

400LFM

 100LFM

Figure 27:

 Output current vs. ambient temperature and air 

velocity @Vin=12V, Vout=0.9V (Either Orientation) 

 

NE12S0A0V06(standard)  Output Current vs. Ambient Temperature and Air Velocity

@Vin=12V Vout=2.5V (Either Orientation)

0

1

2

3

4

5

6

25

30

35

40

45

50

55

60

65

70

75

80

85

Natural

Convection

300LFM

 Output Current (A)

     

  Ambient Temperature (

)

400LFM

500LFM

100LFM

 200LFM

Figure 28: 

Output current vs. ambient temperature and air 

velocity @Vin=12V, Vout=2.5V (Either Orientation)

 

 
 
 
 

THERMAL CONSIDERATION 

 
Thermal management is an important part of the system 
design. To ensure proper, reliable operation, sufficient 
cooling of the power module is needed over the entire 
temperature range of the module. Convection cooling is 
usually the dominant mode of heat transfer. 
 
Hence, the choice of equipment to characterize the 
thermal performance of the power module is a wind 
tunnel.

 

 

Thermal Testing Setup 

 

Delta’s DC/DC power modules are characterized in 
heated vertical wind tunnels that simulate the thermal 
environments encountered in most electronics 
equipment. This type of equipment commonly uses 
vertically mounted circuit cards in cabinet racks in which 
the power modules are mounted. 
 
The following figure shows the wind tunnel 
characterization setup. The power module is mounted 
on a test PWB and is vertically positioned within the 
wind tunnel. The space between the neighboring PWB 
and the top of the power module is constantly kept at 
6.35mm (0.25’’).

 

 

Thermal Derating 
 

Heat can be removed by increasing airflow over the 
module. To enhance system reliability, the power 
module should always be operated below the maximum 
operating temperature. If the temperature exceeds the 
maximum module temperature, reliability of the unit may 
be affected. 

MODULE 

AIR FLOW 

 11 (0.43”) 

50.8 (2.0”) 

FACING PWB

PWB 

AIR VELOCITY

AND AMBIENT 

TEMPERATURE 

MEASURED BELOW 

THE MODULE

 22 (0.87”) 

 

 

Note:

 Wind tunnel test setup figure dimensions are in 

millimeters and (Inches) 

 

Figure 25: 

Wind tunnel test setup

 

Summary of Contents for Delphi 6A Series

Page 1: ...phi NE 6A Series 3 1 13 8V wide input wide trim single output non isolated point of load POL DC DC converters are the latest offering from a world leader in power systems technology and manufacturing Delta Electronics Inc The NE product family is the second generation non isolated point of load DC DC power modules which cut the module size by almost 50 in most of the cases compared to the first ge...

Page 2: ...0uF Tan cap 12Vin 0 5Vo 15 mV Peak to Peak Full Load 10uF Tan cap 12Vin 0 9Vo 20 mV Peak to Peak Full Load 10uF Tan cap 12Vin 2 5Vo 30 mV Peak to Peak Full Load 10uF Tan cap 12Vin 5Vo 50 mV RMS Full Load 10uF Tan cap 12Vin 5Vo 10 mV Output Current Range 0 6 A Output Voltage Over shoot at Start up Vin 12V Turn ON 0 5 Vo Output Voltage Under shoot at Power Off Vin 12V Turn OFF 100 mV Output DC Curre...

Page 3: ...rrent 0 9V output voltage 12V input voltage Figure 3 Converter efficiency vs output current 1 8V output voltage 12V input voltage Figure 4 Converter efficiency vs output current 2 5V output voltage 12V input voltage Figure 5 Converter efficiency vs output current 3 3V output voltage 12V input voltage Figure 6 Converter efficiency vs output current 5 0V output voltage 12V input voltage ...

Page 4: ...le noise at 12Vin 0 59V 6A out Figure 8 Output ripple noise at 12Vin 0 9V 6A out Figure 9 Output ripple noise at 12Vin 1 8V 6A out Figure 10 Output ripple noise at 12Vin 2 5V 6A out Figure 11 Output ripple noise at 12Vin 3 3V 6A out Figure 12 Output ripple noise at 12Vin 5 0V 6A out ...

Page 5: ... 14 Turn on delay time Remote On Off 1 5V 6A out Ch1 Enable Ch4 Vout Figure 15 Turn on delay time at 12Vin 2 5V 6A out Ch1 Vin Ch4 Vout Figure 16 Turn on delay time at Remote On Off 3 3V 6A out Ch1 Enable Ch4 Vout Figure 17 Typical transient response to step load change at 10A μS from 50 100 load at 12Vin 2 5V out 0 0 0 0 0 0 0 0 0 0 ...

Page 6: ...line for safety The output voltage set point and the output current in the application could define the amperage rating of the fuse FEATURES DESCRIPTIONS Enable On Off The ENABLE on off input allows external circuitry to put the NE converter into a low power dissipation sleep mode Positive ENABLE is available as standard With the active high function the output is guaranteed to turn on if the ENAB...

Page 7: ...cup mode When the over current condition is removed the module will resume normal operation An over current condition is detected by measuring the voltage drop across the MOSFETs The voltage drop across the MOSFET is also a function of the MOSFET s Rds on Rds on is affected by temperature therefore ambient temperature will affect the current limit inception point The detection of the Rds on of MOS...

Page 8: ...ipple capacitor ripple current and output voltage ripple and noise measurement setup for NE06 FEATURES DESCRIPTIONS CON Voltage Margining Adjustment Output voltage margin adjusting can be implemented in the NE modules by connecting a resistor Rmargin up from the Trim pin to the Ground for margining up the output voltage Also the output voltage can be adjusted lower by connecting a resistor Rmargin...

Page 9: ...the module Convection cooling is usually the dominant mode of heat transfer Hence the choice of equipment to characterize the thermal performance of the power module is a wind tunnel Thermal Testing Setup Delta s DC DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment This type of equipment commonly uses...

Page 10: ...rd Output Current vs Ambient Temperature and Air Velocity Vin 5 0V Vout 2 5V Either Orientation 0 1 2 3 4 5 6 25 30 35 40 45 50 55 60 65 70 75 80 85 Ambient Temperature Output Current A Natural Convection Figure 31 Output current vs ambient temperature and air velocity Vin 5V Vout 2 5V Either Orientation NE12S0A0V06 standard Output Current vs Ambient Temperature and Air Velocity Vin 3 3V Vout 0 9V...

Page 11: ...t 2 5V Either Orientation NE12S0A0H06 standard Output Current vs Ambient Temperature and Air Velocity Vin 12V Vout 5 0V Either Orientation 0 1 2 3 4 5 6 25 30 35 40 45 50 55 60 65 70 75 80 85 Natural Convection 300LFM Output Current A Ambient Temperature 400LFM 100LFM 200LFM 500LFM 600LFM Figure 37 Output current vs ambient temperature and air velocity Vin 12V Vout 5 0V Either Orientation NE12S0A0...

Page 12: ...t A Natural Convection Figure 40 Output current vs ambient temperature and air velocity Vin 3 3V Vout 0 9V Either Orientation NE12S0A0H06 standard Output Current vs Ambient Temperature and Air Velocity Vin 3 3V Vout 2 5V Either Orientation 0 1 2 3 4 5 6 25 30 35 40 45 50 55 60 65 70 75 80 85 100LFM Ambient Temperature Output Current A Natural Convection Figure 41 Output current vs ambient temperat...

Page 13: ...DS_NE12S06A_06302008 13 MECHANICAL DRAWING VERTICAL HORIZONTAL ...

Page 14: ... year limited warranty Complete warranty information is listed on our web site or is available upon request from Delta Information furnished by Delta is believed to be accurate and reliable However no responsibility is assumed by Delta for its use nor for any infringements of patents or other rights of third parties which may result from its use No license is granted by implication or otherwise un...

Reviews: